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Abstract— The emf expression can be derived with the PM 

volume-integration method, allowing easier optimization and 

prediction of the emf harmonic content. An analytical expression 

is developed for predicting the electromotive force (emf) 

waveforms and flux linkage resulting from the motion of 

permanent magnets (PM) in the case of two cylinders, where the 

outer cylinder carries a surface-mounted winding and the inner 

cylinder carries the PMs. The expressions are based on the PM 

Volume-Integration Method, which uses a volume integral 

calculated over the magnet volume, rather than the usual surface 

integral over the coil surface. The specific case of surface-mounted 

arc PM with radial magnetization is analyzed. An outer cylinder 

with infinitely thin winding distribution on its inner surface is 

considered. The chording factor, slot factor and spread factor are 

included in the analytical expression. The emf waveform and 

related harmonics are predicted analytically and validated by 

comparing with a finite element analysis and with experiment.  

 
Index Terms— Permanent magnet machines, analytical 

calculation, electromotive force, magnet width, harmonics, 

surface-mounted, radial magnetization, optimization and 

prediction of emf harmonics. 

 

I. INTRODUCTION 

ERMANENT magnets (PM) mounted on the surface of a 

cylindrical rotor will create a varying magnetic flux when 

rotating coaxially with respect to an outer, fixed cylinder. A 

winding mounted on the inner surface of such outer cylinder 

will develop an electromotive force (emf) as prescribed by 

Faraday’s law. Such a simple geometry is illustrated in fig. 1c). 

In this paper, attention is paid to the emf waveform created 

across such a winding upon the rotation of the inner rotor. The 

originality of the paper lies in the use of a novel method for 

deriving the emf waveform by expressing the magnetic flux 

created by the magnets in an alternate manner, which is 

obtained by a volume integral over the PM volume, rather than 

using the conventional surface integral over the stator coil. In 

past work [1], the authors have presented the PM Volume-

Integration Method and how analytical expressions of the emf  

can be obtained in cases where magnet shapes are complex. In 

this paper, Radially-magnetized, surface-mounted permanent 
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magnets are considered here. The authors believed there was a 

need for demonstrating the simplicity of the PM Volume-

Integration Method in the case of a more conventional PM 

shape and magnetization pattern, by also including the winding 

distribution factors leading to simple emf analytical expressions. 

These allow easy harmonic optimization and both form the 

original contribution of the paper.  

A classical 3-phase PM synchronous machine configuration 

is shown in fig. 1a), where 1 slot is managed per pole per phase 

(12 slots for 3 phases and 4 poles) and where every winding 

overlaps one entire pole pitch. Semi-closed slots are desirable,  

 
Fig. 1.  (a) 3-phase PM synchronous machine with windings enclosed within 

semi-closed slots. (b) 3-phase PM machine with infinitely thin stator windings, 

equivalent for the emf. (c) Close-up view of the PM machine with infinitely 

thin stator winding. Only phase A is shown. 
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in order to maximize the magnetic flux caught by the winding. 

The behavior of such a PM synchronous machine can be 

approached by that of the concentric cylinders of fig. 1b), where 

slots are removed and replaced by infinitely thin conductors 

disposed along the outer cylinder inner surface.  Fig 1c) is 

identical to fig 1b), with the windings of phases B and C 

removed. Determining the harmonic content of the emf in the 

cylindrical configuration of fig. 1c) will find usefulness in 

industrial drive systems, as discussed in [2], even though the 

stator cylinder with infinitely thin winding does not account for 

the slot harmonics. Slot harmonics will certainly affect the 

torque ripple [3-6], but will not contribute to the machine useful 

torque. The two-cylinder approach with permanent magnets 

was also used in a number of papers [7-9].  

As far as modifying the emf harmonics is concerned, 

increasing emf harmonics of ranks 3, 5, 7, 9 can be useful for 

generating trapezoidal emf waveform. Such trapezoidal emf 

can be used in combination with trapezoidal stator currents 

providing higher power density [10][11][4] in the machine and 

simpler drive control [12]. A well-known design approach to 

increase the emf harmonic content consists in setting the PM 

pole-arc ratio (ratio of PM width over pole pitch) close to 1. 

In some other cases, emf harmonics 3, 5, 7, 9 are not desirable 

or have a detrimental effect [5]. It is then rather the fundamental 

component of the emf waveform that is looked for, in 

combination with sinusoidal phase currents. In this second 

design case, the emf waveform can be made almost sinusoidal 

and its harmonics strongly diminished by setting the PM pole-

arc ratio in the range 0.5 to 0.7. Alternately, the emf harmonic 

content can also be altered by changing the coil distribution of 

the stator winding. For all these cases, there is a need for 

accurately predicting the harmonic content of the emf 

waveform. 

A method often used to determine the emf waveform consists 

in computing the B and H fields of the magnetic circuit for 

different rotor positions, by using a 2-D finite-element software, 

then numerically calculate the integral of the B field over the 

winding area and finally derive the obtained value with respect 

to time [3][4][13][14]. This method can be applied to a set of 

designs until the emf waveform provides good results, which 

can be time consuming. 

In [15], Sebastian et al have derived the fundamental 

component of the phase emf with the assumption of 

sinusoidally-distributed stator winding, using the assumption of 

1-D straight magnetic paths for the PM flux density in the 

airgap. In [16], Almandoz et al have proposed an analytical 

procedure for expressing the emf waveform by expanding the 

PM remanent flux density Br and the corresponding airgap field 

Bg into Fourier series. The stator winding distribution was also 

expanded into Fourier series and the emf harmonics was given 

as a product of field and winding distribution factor space 

harmonics. However, again, the field was assumed to follow 1-

D straight paths in the airgap, which will not give an exact 

solution in the case of a thick air gap. 

Great pieces of the electromagnetic theory were written on 

the analytical derivation of the airgap flux density field B, by 

solving Maxwell’s equation in 2-D with proper boundary 

conditions. In particular, Zhu et al [8] and Boules et al [9] have 

derived analytical expressions in cylindrical coordinates, which 

formulate the 2-D radial and tangential components of the 

airgap flux density as a sum of harmonic components. 

Eventually, these expressions can be used to formulate the 

electromotive force e, by integrating the radial component of 

the airgap flux density B over a winding distribution of the 

stator expressed as a Fourier series, leading to an expression of 

the flux 0 linked by the stator winding. Taking motion into 

account and deriving 0 with respect to time would obviously 

lead to the emf. To our best knowledge, such mathematical 

paths have not been often followed. In these rare cases, only the 

procedure is expressed, as in [6][17][19]. Miller et al [19] have 

approached the problem of emf prediction by proposing 

exponential functions to model the north-south transitions (or 

fringing) between subsequent flux-density plateaus and by 

direct-construction of the emf waveform. Direct, accurate, 2-D 

analytical expressions of the emf waveform and related 

harmonics have been presented in 2014 by Wu et al [7] for 

surface-mounted PM machines. In the latter paper, the flux 

density function is obtained by solving the magnetic scalar 

potential function in the Laplace form in the airgap and in quasi-

Poissonian form in the magnets. The outcome is a rather 

complex and lengthy mathematical approach, which can find 

limitations in the case of less conventional boundary conditions. 

In the present paper, analytical expressions for the open-

circuit flux linkage 0 and emf e seen by an infinitely thin stator 

winding located at the surface of the outer cylinder are 

developed in 2-D for a rotating inner cylinder with surface 

mounted, arc magnets with radial magnetization. The 

expressions are based on the theoretical work presented in 

[1][20] and present a method involving PM volume integration. 

Here, the emf will be determined by using a mathematical 

method different from [7] with a new resolution process and 

suiTABLE for optimization approach: the PM volume-

integration method. 

II. NO-LOAD FLUX LINKAGE WITH THE PM-VOLUME 

INTEGRATION METHOD: GENERAL CONSIDERATIONS 

A. Conventional expression of magnetic flux linkage and 

Faraday’s law 

From Faraday’s law, the electromotive force e created across 

the winding terminals is expressed as the time derivative of the 

magnetic flux linkage 0 produced by the rotor magnets which 

links the coil. The magnetic flux linkage 0 is calculated by 

integrating the flux-density over the coil surface S of fig. 2, or 

mathematically: 

.00  
S

AdB


                   (1) 

In (1), B0 is the magnetic flux density crossing the coil 

surface in the space between the two cylinders and S is the coil 

surface, which may contain one or several turns. The field lines 

of B0 are plotted in fig. 3, for the two-cylinder configuration, 

calculated from finite element analysis (FEA). B0 is the flux 

density generated by the PMs, considering that no current 
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circulates in the stator windings. It is noTABLE that (1) implies 

that permanent magnets are a source of magnetic flux, the latter 

being collected by the coil. Hence, the coil flux linkage depends 

on the source of flux density (the PMs) and the collector 

geometry (the coil surface). 

 

Surface 

integration

 
Fig. 2.  Usual magnetic flux representation with the coil as a collector of B0. 

 

 

Fig. 3.  Flux lines of B0 created by the PM in a FEA of surface-mounted PM. 

Thin conductors are shown in the airgap. 

B. Reciprocal relationship 

A mathematical expression has been developed in [20] to 

express the flux linkage 0 in a different manner: 

.0  

PMV

r

a dVB
i

H 


                  (2) 

In (2), Ha is the magnetic field intensity created by the stator 

coil alone (that is, when the PMs are replaced by air) upon the 

application of a current i in the coil. Br is the PM remanent flux 

density and VPM is the volume of the PMs. Here, we note that 

(2) is expressed as a volume integral, which is different from 

the conventional surface integration of (1). Equation (2) is 

mathematically equivalent to (1), as long as the following 

assumptions are met: 

1) PMs have rigid magnetization, that is constant 

magnetization and recoil permeability recoil = 0. 

2) Steel parts are ideal (no saturation and infinite 

permeability). 

3) Constant magnetic vector potential throughout the coil 

conductors cross-section, that is, assumption of filamentary 

conductors. 

These 3 assumptions will be implicit throughout the paper. 

At this point, the reader may be uncomforTABLE with the idea 

that the flux linkage 0 expressed with (2) is equivalent to (1). 

However, the demonstration of this equivalence was well 

established in [20]. As a matter of fact, experimental results 

published in [1] have confirmed the validity of the PM-volume 

integration method. Moreover, the emf analytical expressions 

described in the rest of this paper and derived from (2) will also 

correlate with the emf obtained from both FEA and experiment 

as will be shown in section III.  

The mathematical form of (2) suggests that the flux 0 

linking the coil be viewed as a quantity obtained when a 

magnetic field Ha is produced by an infinitesimal current i 

flowing in that coil, the latter field Ha being collected by the PM 

volume elements. The calculation of Ha considers that all the 

PM volume elements are considered as empty space, as shown 

in fig. 4 and 5. Whence, (2) is reciprocal to the conventional 

expression for 0 where, in (2), the source of the magnetic 

interaction is the coil, whereas the collector geometry is the PM 

volume. This is shown in fig. 4 and 5.  

i

Volume integration

 

Fig. 4.  Magnetic flux representation with PM volumes as a collector of Ha. 

 

Fig. 5.  Flux lines of Ha from 2-D FEA. Ha created by a current flowing in the 

conductors in a 2-cylinder configuration with PM volumes replaced by air. 

In many cases, (2) will simplify the mathematical derivation 

of the emf and 0. Usually, determining B0 implies solving 

Poisson’s equation inside the magnets and Laplace equation in 

the airgap with the boundary conditions of the magnet elements 

of fig. 3, which can be a delicate task, when boundary 

conditions are more complex. On the other hand, solving Ha is 
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done by solving Laplace equation with circular boundaries, 

which is often much simpler. Also, the computation of magnetic 

flux with (1) requires the proper selection of the integration 

surface S, whereas the PM-volume integration implies that the 

volume elements are determined by the PM-volume geometry. 

III. PM-VOLUME INTEGRATION METHOD: NO-LOAD FLUX 

LINKAGE AND EMF FOR CONCENTRIC CYLINDERS WITH 

SURFACE-MOUNTED PM 

In this section, the PM volume-integration method described 

by (2) is used to derive an analytical expression of the 

electromotive force across the winding of Fig. 6. The PMs 

considered have a radial magnetization and are mounted on the 

surface of the rotor cylinder. In the cylindrical coordinate form, 

the dot product of (2) is transformed into 
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where Brr and Br are respectively the radial and tangential 

components of the PM remanent flux density. Har and Ha are 

the radial and tangential components of the stator-created 

magnetic field in the airgap. Here, the flux linkage 0 is 

calculated for one stator coil with magnets replaced by air. The 

PM integral volume extends from radius r = rr to radius r = rr + 

hm, from mechanical angle  = -p/2 to  = +p/2, and from 

axial length l = 0 to l = ls. As depicted in Fig. 6, rr is the rotor 

radius, hm is the thickness of the rotor magnets, ls is the axial 

length of the stack of stator laminations and p is the number of 

pole pairs. Parameter p is the mechanical angle (in rad) 

occupied by one pole, which is equal to p = /p. With radially-

magnetized PM, the tangential component Br is zero, leaving: 
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Fig. 6.  Rotor and stator cylinders with their geometrical variables in a 12-pole 
configuration. 

A.   Magnetic field Har produced by the winding between the two 

cylinders 

The stator-created field for the two-concentric cylinder 

problem with an infinitely thin winding was derived in previous 

scientific literature, by solving the magnetic vector potential 

expressed with Laplace equation [21]. The resulting Har/i gives 
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where Har is the radial component of the magnetic field 

intensity created in the space between the two cylinders, when 

magnets are replaced by air.  is the mechanical angle (see Fig. 

6).  is the rank of the harmonic considered. Equation (5) is 

expressed in terms of a sum of harmonic components and has 

only odd harmonics components due to the presence of a 

symmetrical winding. N is the winding distribution factor, 

which accounts for how the thin coils are disposed along the 

inner surface of the cylinder. This coil distribution will have a 

significant effect on the emf waveform obtained across the 

winding. Section IV will pay special attention to the values of 

N and the effect of the coil distribution. 

B.   Harmonic content of the magnetization for a surface-

mounted arc PM 

 The radial component of the remanent flux density Brr may 

also be expressed as a sum of harmonic components with 

respect to the circumferential angle . For a rotor position of  

 = 0 rad, it can be viewed as the periodic function shown in fig. 

7, which can be expressed as a Fourier series: 
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Fig. 7.  PM remanent flux density distribution along the cylinder circumference 

for a standstill position ( = 0 degree). 

where Br is the corresponding Fourier coefficients of the PM 

radial remanent flux density for each space harmonic. For a PM 

pole-arc ratio , the amplitude of each harmonic will then be 

given by (7), that is, 
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Br is the remanent flux density of the PM material and  is the 

PM pole-arc ratio. As the inner cylinder rotates with a given 

fixed velocity  (in rpm), the rotor angular position  increases 

at constant rate and Brr can be written with, 
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C. Analytical expressions for the open-circuit flux linkage and 

emf 

The volume integral over the PM boundaries is obtained by 

inserting (5)-(8) into (4) (detailed in [1]): 
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The mathematical formulation of (9) considers an equal 

number of stator and rotor poles. As can be expected from a 

symmetrical stator and rotor, only odd harmonics are obtained. 

The emf e() is obtained by deriving (9) with respect to time,  

being the only term varying with time. Here, it is the emf across 

the entire winding that is looked for, when all coils are 

connected in series. The result obtained should then be 

multiplied by the number of poles 2p, giving eq. (10). In (9), 0 

is the flux linkage caught by one stator pole and its winding, 

whereas in (10), e is the total stator emf with all stator windings 

connected in series. 
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Eq. (9)-(10) exhibit a dependence on the PM remanent flux 

density and corresponding space harmonics Br. The 

distribution of the winding, given by N, on the surface of the 

outer cylinder will also impact the waveform and harmonics of 

0() and e(). Eq. (10) highlights one essential condition for 

which any harmonic can be found in the emf spectrum: the 

harmonic component must be found in both the PM space 

harmonics Br and stator winding space distribution N.  

IV. WINDING CONFIGURATION AND  

N is the winding distribution factor for each harmonic [21].  

The distribution of the stator conductors along the stator core 

inner circumference is modeled by the number of conductors 

n() as a function of the mechanical angle . The value N 

considered in (5) assumes that n() is expressed by a Fourier 

series as [21]: 
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and where N is the total number of turns in the machine and  

is the order of the harmonic [21]. The scientific literature has 

abundantly discussed how the various winding configurations 

affect the values of N. Factors kd, kc, ks are respectively, the 

winding spread factor, chording factor and slot factor. The 

definition of these 3 factors is classical (given in Appendix). 

The emf is obtained as a function of the winding factors by 

inserting (7) and (12) into (10): 

 






























































...5,3,1

11

)
2

sin(
2

sin

15

4
)(












scdp

r

s

p

s

r

rrs kkk

r

r

r

r

NBprl
e

 

(13) 

).sin(
1

11

1

11

11



























































p

r

h

p

r

h
p

r

m

p

r

m

  

 

Eq. (13) is the analytical expression of the electromotive force 

that was looked for, which accounts for any winding 

configuration.  

V. VALIDATION OF THE EMF EXPRESSION 

The electromotive force waveform and its harmonic 

components can be predicted with (13). The relative weight of 

the harmonics will depend on the number of pole pairs p, PM 

pole-arc ratio , magnet thickness hm, stator and rotor radii rs 

and rr and the three winding factors kd, kc, ks. 

To determine the validity of (13), the emf waveform will first 

be calculated analytically with (13) and compared with the 

Finite Element Method in one given machine configuration, for 

2 given values of . Then, in section V.B, a comparison of the 

emf waveform calculated analytically with (13) will be made 

with experimental results. 

A. Validation for a full-pitch winding: Analytical vs Finite 

Element Method 

For a full-pitch winding like the one shown in Fig. 6, we have 

kd = kc= 1 for all harmonics. The expression for ks detailed in 

appendix I is inserted in (13), yielding: 



194 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 1, NO. 2, JUNE 2017 

1,3,5...

sin sin( )sin
4 2 2 2

( )
15

1 1
2

k

s r r

p p

s kr

s r

l r p NB
e

rr

r r

 


  





 





  
  

   
 

        
         
          

  

(14) 

).sin(
1

11

1

11

11



























































p

r

h

p

r

h
p

r

m

p

r

m

 

Eq. (14) is the central element of the paper. It allows 

expressing the emf as a function of time and optimizing its 

harmonic content, as will be described further in the paper.  To 

validate (14) with the specifications listed in TABLE I was 

investigated. The emf expression described by (14) was 

calculated as a function of the electrical angle  for 5 values of 

the PM pole-arc ratio . The resulting waveforms are presented 

in Fig. 8.  
TABLE І  

GEOMETRY OF THE PMSM  USED IN THE FEM AND EXPERIMENT 

Parameters Symbol  Units 

Number of poles 2p 12 — 

Number of turns N 5 — 

Rotor radius rr 0.061 m 

Stator radius rs 0.075 m 

Airgap thickness g 5 mm 

Magnet thickness hm 9 mm 

Coil width (electrical angle) k 2.3 ° 

Magnet remanent flux density Br 1.15 T 

Coil length ls 20 mm 

Rotational speed  1462 rpm 

 

TABLE II presents the amplitude of the emf harmonic 

components of rank 1 to 7, calculated with (14) with the 

geometry detailed in TABLE I.  From fig. 8 and TABLE II, it 

is noted that a PM pole-arc value of  = 0.6 will provide a more 

sinusoidal emf, whereas a  value higher than  

  = 0.8 will provide a more squary waveform. Fig. 8 also shows 

a dashed waveform, corresponding to a PM pole-arc ratio of  

= 0.405, which will be the value used in the experimental 

machine presented in section III.B. 

The same geometry (TABLE I) was implemented in 

Infolytica Magnet VII Finite Element Package. A 2-D 

magnetostatic simulation was carried out for 44 increasing 

electrical angles of the inner cylinder between 0 and 180 

degrees electrical. For each electrical angle value, the flux 

linking the stator winding was computed and the electromotive 

force could be estimated from the flux variation between two 

successive angles. 

As finite element method (FEM) implies some 

computational inaccuracy when computing the flux linkage, 

great care was taken in the simulation. Automatic meshing 

adaption was enabled, until a 0.01% difference in magnetostatic 

energy could be reached between two subsequent meshing 

patterns. Fig. 9 illustrates the flux line distribution after FEM 

field computation obtained for  = 0.2. Fig. 10 shows the results 

of the emf computed with the aid of the FEA package. The emf 

difference between (14) and the FEA is plotted on the graph of 

Fig. 11. The average difference is 0 V and the most significant 

difference observed at one point is 40 mV. 

TABLE ІI  
 AMPLITUDE OF EMF HARMONIC COMPONENTS FROM (14)  

Pole-arc ratio   = 1  = 3  = 5  = 7 Units 

1.0  0.28 0.07 0.02 V 

0.8 1.59 0.16 0.00 0.01 V 

0.6 1.36 0.09 0.07 0.01 V 

0.405 1.02 0.27 0.00 0.02 V 

0.2 0.52 0.23 0.07 0.02 V 

 

 
 

Fig. 8.  Theoretical waveform obtained in 2-D with (14) for the geometry of 

TABLE I and PM pole-arc ratios of  = 0.2, 0.405, 0.6, 0.8, 1. The waveform 

for  = 0.405 is shown with a dash line, as it also represents the condition of the 

experimental set-up presented in the next section. 

 
 

Fig. 9. Finite element model of the PMSM with PM pole-arc ratio  = 0.2 in 

rotor position  = 0.  
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Fig. 10.  Emf waveform obtained from 44 FEA Simulations. Geometry of  
TABLE I is considered and PM pole-arc ratios of  = 0.2, 1.  
Permanent Magnets Br = 1.15 T and recoil = 0. 

 

 
Fig. 11.  Difference between (14) (fig. 8) and waveform from Finite Element 

Simulation (fig. 10). PM pole-arc ratios of  = 0.2, 1.  

Most of the other points show a difference between theory 

and FEM of less than 10 mV. Due to the inherent property of 

Faraday’s law, which implies computing the difference 

between two flux values at two successive instants, any small 

inaccuracy on each of the flux linkage FEM calculation will 

result in a higher error on the emf estimation. EMF computation 

using Finite Element simulation packages never provides 

perfect accuracy, even with the best precautions. All this being 

considered, it is reasonable to conclude that the analytical 

expressions of (14) is verified by the FEA. 
 

B. Validation for a full-pitch winding: Analytical vs 

Experiment 

An experiment was carried out with the rotor configuration 

of fig. 12 with the values listed in TABLE I inserted in the 

slotless stator of Fig. 13. In this experiment, the PM pole-arc 

ratio is set to  = 0.405. As illustrated in Fig. 13, only 1 pole of 

5 turns was wound on the stator surface. The voltage was 

recorded across the winding at no-load. The measured 

waveform and the theoretical waveform predicted with (14) are 

shown in Fig. 14, with good agreement between theory and 

experiment. 

A remark is made on the magnetization and shape of the 

magnets shown in Fig. 12. The rotor magnets were rectangular 

magnets instead of curved, arc magnets. 

 

 
Fig. 12.  Rotor geometry used in the experiment. 

 

 
 

Fig. 13.  Stator cylinder and position of the stator coil.  

 

 
Fig. 14.  Emf experimental waveform measured across the 5-turn stator coil and 

comparison with theoretical eq. (14). PM pole-arc ratio  = 0.405. 

 

Also, the magnetization could not be made perfectly radial. 

These magnets were magnetized perpendicular to the magnet 

surface. These imperfections account for the small differences 

observed in Fig. 14 between theory and experiment. 

VI. OPTIMIZATION OF FLUX AND HARMONIC CONTENT 

Eq. (9) (no-load flux 0) and (14) (electromotive force e) can 

be used to optimize the PM pole-arc ratio , in order to 
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investigate how  will influence the peak flux value and 

harmonics content. 

 The dimensions of the geometry described in TABLE I are 

inserted into (9), with airgaps value of g = 2 mm, 3 mm and 5 

mm and identical magnet thickness. The resulting flux linkage 

0 in the d-axis (for  = 0) is computed for increasing  values, 

with the corresponding results displayed in fig. 15. As can be 

expected, thinner airgaps will result in more flux linked by the 

stator coil. As the magnet width increases (increasing ), the 

flux 0 increases linearly up to a certain point. For g = 2 mm, 

with   > 90%, the additional cost of PM material will create 

only a marginal flux increase. For g = 5 mm, this is also the case 

for   > 80%. This difference is explained by the flux exchange 

between two adjacent magnets, which does not contribute to the 

flux seen by the stator conductor. With a thicker airgap, the 

amount of flux exchanged between neighboring magnets is 

higher than with thin airgaps. 

For emf harmonic optimization, the derived expression (14) 

is used. Fig. 16 shows the ratio of the amplitudes of emf 

harmonics 3, 5, 7 over the amplitude of the fundamental, for 

two different airgap values. For trapezoidal emf waveform, a 2 

mm-airgap with  = 0.9 will be best. For a sinusoidal waveform, 

 = 0.7 is a good compromise among harmonics 3, 5, 7. If 

harmonic 3 needs to be entirely suppressed,  = 0.67 will allow 

entire suppression of harmonic 3. This information will be 

useful especially when the stator windings are to be connected 

with a delta configuration.  

From the results described in fig. 16, it is not possible to 

obtain entire suppression of all harmonics for a given  value. 

 = 0.67 will suppress harmonic 3,  = 0.8 will suppress 

harmonic 5 and  = 0.86 will suppress harmonic 7. 

The resulting harmonic levels obtained with (14) and 

described in fig. 16 readily indicate that increasing the airgap 

thickness will reduce the harmonic content and thus enable 

more sinusoidal waveforms. Fig. 17 shows the emf waveforms 

predicted with thin (g = 2 mm) and thick (g = 5 mm) airgaps for 

a given magnet thickness (hm = 9 mm) and stator bore diameter 

(rs = 7.5 cm).  

 
 

Fig. 15.  Peak flux value obtained with equation (9) (all harmonics summed up) 

in the d-axis, as a function of the PM pole-arc ratio  . Geometry of TABLE I 
is inserted (9) with 3 airgap values (g = 2 mm, g = 3 mm, g = 5 mm). Magnet 

thickness hm = 9 mm and stator bore diameter rs = 7.5 cm for all three airgaps. 

  
a) g = 2 mm 

 
b) g = 5 mm 

Fig. 16.  Ratio emf harmonic  over emf fundamental (harmonic 1), as a 

function of the PM pole-arc ratio  . These are theoretical results obtained with 
equation (14). Geometry of TABLE I is used with a) g = 2 mm b) g = 5 mm. 

Magnet thickness hm = 9 mm and stator bore diameter rs = 7.5 cm. 

 
a) g = 2 mm 

 
b) g = 5 mm 

Fig. 17.  Emf waveform e() for   0 05  . These are theoretical results 
obtained with equation (14). Geometry of TABLE I is used with a) g = 2 mm 

b) g = 5 mm. Magnet thickness hm = 9 mm and stator bore diameter rs = 7.5 cm. 
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VII. CONCLUSION 

The paper has presented analytic expressions for the no-load 

flux linkage and the electromotive force of a PM synchronous 

machine with surface-mounted, arc magnets. These analytic 

expressions are derived from the previously developed concept 

of PM volumetric integration with the assumptions of rigid 

magnets and ideal, non-saturable stator and rotor cores. The 

methodology presented allows easy derivation of no-load flux 

whereas the 2-D circulation of the fields in the airgap is taken 

into account. 

Equations (13) and (14) express the electromotive force e as 

a function of the rotor electrical angle  as a sum of harmonic 

components. The electromotive force calculated analytically 

with (14) is plotted for a given machine geometry with two PM 

pole-arc ratios of  = 0.2 and  = 1.0. These waveforms are 

compared to waveforms computed with FEM and show good 

agreement between analytical expressions calculated with the 

PM volume-integration method and FEA. 

A comparison was also made between the emf waveform 

obtained from the analytical expression and from experimental 

data. Both waveforms correlate. These two validations (FEM 

and experimental), lead to conclude that the analytical 

expressions (9), (10), (13) for 0 and e are exact and usable for 

a winding mounted on the inner surface of an outer stator 

cylinder, and where the rotor is mounted with arc magnets with 

radial magnetization. These expressions will be useful for 

determining the emf in the case of a slotted stator with semi-

closed slots. The case of PM with parallel magnetization is not 

studied in this paper (only radial magnetization here), but the 

PM volume integration method could be used in a similar 

manner in future works. 

Finally, the flux linkage and emf expressions derived allow 

optimally selecting the PM pole-arc ratio  for harmonic 

maximization or minimization with various machine 

geometries, as was demonstrated in the last section of the paper. 

APPENDIX: WINDING DISTRIBUTION FACTORS 

The winding distribution is defined using 3 coefficients for 

each harmonic : 

 Spread factor kd: winding dispersion on multiple slots 

for each stator pole; 

 Chording factor kc: winding dispersion on the entire 

stator pole width (full-pitch) or a fraction of the stator 

pole width (short-pitch). 

 Slotting factor ks: winding dispersion due to the width 

of the slot opening; 

Spread factor: 

For one stator pole, the winding will occupy a given number 

of slots. The more slots are occupied by a winding, the more 

spread (or distributed) this winding will be  
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where m is the number of phases and q is the number of slots 

per pole per phase. For q = 1, the winding is concentrated and 

for q  >> 1, the winding will be very distributed. 

Chording factor: 

The winding can be configured to occupy a complete stator 

pole (full-pitch winding) or to occupy a width smaller than the 

pole pitch (short-pitch winding). Considering an integral 

number of stator slots, the winding will be short-pitched by 

discrete electrical angles. Short-pitching the stator winding will 

also affect the emf harmonics. The chording factor is defined as 
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 is the number of slots by which the winding is short-pitched. 

Slotting factor: 

In a slotless, flat winding, the conductors will occupy a given 

width k. The slotting factor is defined as 
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where k is the slot opening in electrical radian. For wider 

values of k, the emf will be more sinusoidal and harmonics of 

higher ranks will be diminished.  
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