
  

Abstract -- This paper addresses the difficulty of modeling 
and optimizing transverse flux machines (TFMs). 3D flux line 
patterns, complex leakage paths and saturation of the magnetic 
material significantly add to the complexity of building 
accurate magnetic models to optimize TFMs. In this paper, a 
new design method is presented and applied to maximize the 
no-load flux of a Clawpole TFM. An error compensation 
mechanism combined to an analytical reluctance model is 
proposed as a solution to overcome inherent inaccuracies of 
TFM analytical models in a design process. As a natural 
complement to a previous communication focused the model 
and the error compensation mechanism, this paper investigates 
the use of this design method in an optimization context. 
 

Index Terms-- Modeling, Optimization, Finite Element 
Methods, Transverse Flux Machine. 

I.   INTRODUCTION 

 he high torque and power capabilities of Transverse 
Flux Machines (TFMs) have been discussed in a 
number of publications [1]-[10]. These capabilities 

make TFMs an attractive solution in some low-speed, high 
torque applications such as direct-drive wind turbines or 
automotive electric traction [2]. Since its introduction by 
Weh in 1986 [1], several structures have been proposed with 
the transverse flux concept such as single- or double-sided 
machines, TFMs with surface magnets or with flux 
concentration [2]. 

This paper deals with the development of a new design 
method for TFMs. It is applied to the Clawpole TFM 
(CTFM) structure while it is not restricted to this particular 
TFM geometry. CTFM magnetic circuits are usually made 
from soft magnetic composite materials (SMC) for their 
isotropic properties and for manufacturing purposes. CTFMs 
offer a great compromise between torque density and ease of 
construction and manufacturing [3]-[5]. A CTFM version 
using a hybrid stator, made of a combination of SMC and 
Fe-Si laminations or amorphous material is presented in 
[4][6]. Compared to CTFMs made of SMC only, this 
configuration offers reduced iron losses while further 
improving its manufacturing. This paper deals with such a 
CTFM structure. An exploded view of one phase of a 20 
pole pairs CTFM with hybrid stator is shown in Fig. 1. 

Many reports of TFM design methods can be found in the 
literature: [2][3][5][7][8][10]. Many of them insist on the 
complexity of modeling and optimizing such machines. High 
power and torque densities of TFMs are usually obtained 
with a large number of poles and high electric loadings. This 
unfortunately implies that optimized TFM designs are 
penalized by an inherent poor magnetic coupling (high 
leakage fluxes) which translates into low power factors 
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[2][3][5]. As noted by Dickinson et al. in [5], the key to 
adequate TFM design is to minimize such unwanted leakage 
fluxes without reducing the mutual coupling between stator 
and rotor fluxes while keeping a high number of poles. 
Therefore, leakage paths are crucial and cannot be neglected 
while designing a TFM. Unfortunately, 3D flux line patterns 
in the machine magnetic circuit, complex leakage paths and 
saturation of the magnetic material significantly complicates 
torque prediction of CTFM and TFM in general. 

For these reasons, finite element (FE) simulations are 
commonly used in the design process [2][3] [10]. The 3D 
structure of the CTFM requires heavy time-consuming finite 
element analyses (FEA) that are not well suited to iterative 
optimization procedures. Therefore, CTFM design processes 
based on FEA often rely on simple cut and try 
experimentations guided by the designer’s knowledge [3] 
[10]. It is the author’s experience that such a design 
approach is time-consuming but also frustrating as there is 
no guarantee of convergence towards one true optimal 
solution. 

Analytical models are, in general, preferable to FEA 
simulations for the design and optimization processes as they 
are faster to solve and enable better exploration of the 
solution space. In [2][10], simplified magnetic reluctance 
networks are used to derive CTFM fluxes and calculate the 
machine torque. However, these magnetic models neglect 
leakage paths and saturation, eventually leading to 
significant prediction errors , thus restraining their use to 
estimate initial values for a FEA-based optimization process. 
Flux and torque values can also be evaluated with rather 
complex magnetic reluctance networks as those presented in 
[5][7][8]. Such reluctance networks model 3-D flux paths in 
the CTFM magnetic circuit and leakage paths as well 
through several reluctances. This is also the direction chosen 
in this paper.  In [8][9], flux paths and reluctance 
expressions are derived by averaging the output of a very 
large number of FEA simulations, which is a substantial 
computational burden, with no guarantee of reaching 
acceptable accuracy, as pointed out in [9]. In addition, [7][8] 
also take into account the non-linear characteristics of 
ferromagnetic materials. Despite their complexity, such 
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Fig. 1. 1 phase, 20 pole pairs CTFM with hybrid stator. Left: stator. Center: 
whole motor phase. Right: rotor. 



  

models can rather easily be programmed to be employed in 
an optimization procedure as in [5]. It is the author’s 
experience that the accuracy of such complex reluctance 
models is rather dependent on the machine dimensions: 
assumptions taken to model main and leakage paths are 
strongly related to the magnetic circuit shape and 
dimensions. While accurate for some machine designs, it can 
lead to significant errors for others. Using similar models, 
Dubois reports errors between analytical and FE results 
varying between -3 % and 25 % on flux estimations with 10 
different TFM designs [9]. 

This paper addresses the difficulty of modeling and 
optimizing TFMs by presenting the basis of a new and 
original design method applied to the CTFM with hybrid 
stator structure. The method uses a magnetic model, 
expressed as a comprehensive reluctance network, which 
models both machine main flux path and leakage flux paths. 
This work is the subject of a companion paper [11], where 
this model is found to be very accurate for any machine 
design because it is equipped with an error compensation 
mechanism. It is shown in [11] how FEA-derived correction 
factors applied to selected reluctances guarantee the validity 
of the model results during an optimization process. In the 
remainder of the current paper, the model is briefly recalled, 
along with the compensation mechanism detailed in [11]. 
Moreover, TFM machine optimization with correction 
factors will be investigated in more depth, as a natural 
complement to the modeling method covered in the 
companion paper. 

As in [11], this study is limited to the no-load case: the 
model presented in this paper allows the accurate calculation 
of the no-load flux of a CTFM with hybrid stator within a 
design process along with the design optimization of such a 
machine, where the no-load flux needs to be maximized. 
Maximization of no-load flux is of critical importance in 
TFM machines, for the sake of increasing the machine 
power factor as much as possible. Regarding the 
maximization of the machine torque, a machine with high 
no-load flux will also greatly contribute enhance the 
machine torque, although the armature flux contribution 
should also be considered. Further works are still required to 
develop a model that maximizes torque, considering the 
armature flux as well as the no-load flux. This will not be the 
subject of this paper, as the present discussion focuses on the 
optimization of the machine design parameters with respect 
to the maximization of no-load flux 

II.   ANALYTICAL MODEL USED FOR THE DETERMINATION OF 

THE MACHINE NO-LOAD FLUX LINKAGE 

This section intends to introduce the proposed CTFM 
reluctance model and the error compensation mechanism, 
which has been described more extensively in [11]. The 
CTFM no-load flux is calculated from an analytical 
procedure based on a magnetic reluctance network. The 
determination of the main flux path and the leakage flux 
paths was addressed from an accurate observation of the flux 

patterns in a typical 3D FEA. Whenever the reluctance 
model is found to be inadequate, the errors are compensated 
with correction factors applied to selected reluctances. In 
addition, material non-linearities are also taken into account 
in the model. 

A.   Reluctance network and no-load-flux expression 

Fig. 2 shows the reluctance network considered here. 
Using the motor symmetry, this network is reduced to one 
pole pair. Rconc, Rfoot and Rcore are the reluctances respectively 
associated to the machine rotor concentrator, stator foot and 
core. Rmag represents the magnet reluctance. Rgap is the airgap 
reluctance under a half rotor pole. RleakR and RleakS are the 
reluctances respectively associated to flux leakage paths 
between adjacent rotor PMs and the stator feet. Rsided and 
Rsidep represent the leakage reluctances between the stator 
feet and rotor concentrators from both sides of a foot. Fmag is 
associated to the PM magnetomotive force (MMF). 
Analytical expressions for the reluctances depicted in Fig. 1 
have been determined from the motor geometrical 
dimensions and material characteristics. These expressions 
as well as the assumptions made are detailed in the 
companion paper [11]. Applying Kirchhoff’s laws to the 
reluctance network gives the following system of equations: 
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௠௔௚ܨ − ܴ௠௔௚ ∙ ߶௠௔௚ − ܴ௟௘௔௞ோ ∙ ߶௟௘௔௞ோ = 0

௠௔௚ܨ − ܴ௠௔௚ ∙ ߶௠௔௚ − 2 ∙ ൫ܴ௖௢௡௖ + ܴ௚௔௣ + ௙ܴ௢௢௧൯ ∙ ߶௚௔௣ − ܴ௖௢௥௘ ∙ ߶௖௢௥௘ = 0

௠௔௚ܨ − ܴ௠௔௚ ∙ ߶௠௔௚ − ൫ܴ௖௢௡௖ + ܴ௚௔௣ + ௙ܴ௢௢௧൯ ∙ ߶௚௔௣ − ܴ௦௜ௗ௘ௗ ∙ ߶௟௘௔௞௦௜ௗ௘ௗ = 0

௠௔௚ܨ − ܴ௠௔௚ ∙ ߶௠௔௚ − ൫ܴ௖௢௡௖ + ܴ௚௔௣ + ௙ܴ௢௢௧൯ ∙ ߶௚௔௣ − ܴ௦௜ௗ௘௣ ∙ ߶௟௘௔௞௦௜ௗ௘௣ = 0

ܴ௟௘௔௞ௌ ∙ ߶௟௘௔௞ௌ − ܴ௖௢௥௘ ∙ ߶௖௢௥௘ = 0

 (I) 

mag, leakR, gap, leaksided, leaksidep, leakS, Core represent the 
branch fluxes (per pole pair) of the reluctance network, Core 
being the machine no-load flux (per pole pair). As explained 
in [11], a mathematical software has been used to determine 
analytical expressions for each of the 7 branch fluxes of 
system (I). The resulting expression for the no-load flux Core 
(per pole pair) is described by Eq. (2). 

core=−(2·Fmag·RleakR·RleakS·(Rgap·Rsided+Rgap·Rsidep−Rsided·Rsidep+Rconc·(Rsided+Rsidep)+Rfoot·(Rsided+Rsidep)))/(2·RleakR·(2·(Rfoot+Rgap)·RleakS·Rsided·Rsidep+Rconc·(2·
RleakS·Rsided·Rsidep+Rcore·(4·Rsided·Rsidep+RleakS·(Rsided+Rsidep)))+Rcore·(RleakS·Rsided·Rsidep+Rfoot·(4·Rsided·Rsidep+RleakS·(Rsided+Rsidep))+Rgap·(4·Rsided·Rsidep+RleakS·(
Rsided+Rsidep))))+Rmag·(RleakS·(RleakR·Rsided·Rsidep+Rfoot·(4·Rsided·Rsidep+RleakR·(Rsided+Rsidep))+Rgap·(4·Rsided·Rsidep+RleakR·(Rsided+Rsidep)))+Rconc·(RleakS·(4·Rsided·
Rsidep+RleakR·(Rsided+Rsidep))+2·Rcore·(4·Rsided·Rsidep+RleakR·(Rsided+Rsidep)+RleakS·(Rsided+Rsidep)))+2·Rcore·(RleakR·RleakS·Rsided+RleakR·RleakS·Rsidep+RleakR·Rsided·Rsid

ep+RleakS·Rsided·Rsidep+Rfoot·(4·Rsided·Rsidep+RleakR·(Rsided+Rsidep)+RleakS·(Rsided+Rsidep))+Rgap·(4·Rsided·Rsidep+RleakR·(Rsided+Rsidep)+RleakS·(Rsided+Rsidep)))))    (2) 

 
Fig. 2. Equivalent magnetic reluctance network used for the determination of 
the CTFM no-load flux-linkage. 



  

B.   Material saturation concerns 

Rconc, Rfoot and Rcore (darkened in Fig. 1) are affected by 
saturation as they represent flux paths through the motor 
soft-magnetic parts. Non-linearities of the magnetic 
materials are considered in the analytical model by adjusting 
the material permeability according to their B-H curves. 
Non-linear permeabilities μconc, μfoot and μcore are considered 
respectively in Rconc, Rfoot and Rcore expressions. The latter 
are calculated using a numerical procedure involving a non-
linear system solver (which does not involve FEA) which 
iteratively uses the core flux calculated with the analytical 
model in order and determines the permeability to be used 
from the value of B obtained analytically and the material B-
H curves. Considering non-linear permeabilities of the 
machine magnetic circuit materials, the expression of Core 
(Eq. 2) enables calculating the saturated no-load flux. 

C.   Error compensation mechanism 

The model accuracy is dependent on the motor’s 
magnetic circuit dimensions as shown in [11]. While 
accurate for some designs, significant differences between 
the results obtained with the model and FEA have also been 
observed. Errors on the analytical no-load flux estimation 
varying between -16% and 10 % have been observed 
considering 4 different CTFM designs [11]. The difficulty in 
obtaining accurate magnetic models for TFM has also been 
noted by several authors in the literature as pointed in 
[2][5][7]-[10]. Such inaccuracies prevent the current model 
to be used in an optimization process, as it could lead to 
false optimal designs. A solution to this problem has been 
presented in [11]: this is done by equipping the analytical 
model with an error compensation mechanism. Correction 
factors are applied to selected reluctances of the model 
during the design process. As pointed in the literature [7]-
[10] and in the companion paper [11], errors mainly occur in 
predicting flux leakage and flux path in the airgap. 
Therefore, 5 correction factors, kleakR, kleakS, ksided, ksidep and 
kgap are applied to the leakage reluctances RleakR, RleakS, Rsided, 
Rsidep as well as the airgap reluctance Rgap. The resulting 
corrected model is used inside an optimization loop. Once an 
optimal design has been found, the model results have to be 
validated and its correction factors values changed if 
necessary. For each intermediate optimal design found after 
an optimization, one compares the fluxes calculated 
analytically from the reluctance model to those obtained by a 
3D FE computation. Whenever a difference exists between 
the fluxes, corrections factors values are adjusted by a least-
square method aimed to minimize the differences. Results 
have shown that the method is rather efficient reducing 
model errors to negligible levels [11]. 

The error compensation method combined to the 
developed reluctance model is destined to be used within a 
CTFM design process. As an analytical model is used inside 
the optimization loop, the optimization process itself is 
rather fast. Moreover, the use of the error compensation 
mechanism ensures a sufficient accuracy to the analytical 
model. This method provides optimal solutions whose 
validity is guaranteed by a limited number of FE 
simulations. The following section presents an example of 
CTFM optimization using this method. 

III.   CTFM NO-LOAD FLUX OPTIMIZATION 

The reluctance model and the error compensation 
mechanism presented in the previous section are now used in 
an optimization context. This section shows the effectiveness 
of this CTFM design methodology. For this purpose, a case 
of study of CTFM no-load flux maximization is presented. 
The optimality of design solutions provided this 
optimization methodology is also discussed. 

A.   Optimization principles 

The analytical model described of Fig.1 has been 
implemented in a Microsoft Excel® worksheet. The no-load 
flux equation (Eq. (2)) as well as the expressions of the 6 
other branch fluxes have also been inserted in the worksheet 
thus giving direct relations between the machine dimensions 
and magnetic performances. Flux calculations considering 
non-linear material characteristics are achieved using 
algorithms developed in Visual Basic macros. The 
compensation error mechanism has been implemented in the 
worksheet. Visual Basic macros have been developed to link 
worksheet data to the FE software Infolytica® Magnet VI® in 
order to build, simulate and get results from FE models to 
determine the correction factors. Using Microsoft Excel®’s 
solver, the developed worksheet acts as a simple and 
powerful CTFM design tool. The main dimensions of one 
CTFM pole pair are identified in Fig. 3. The optimization 
procedure presented in this paper consists in finding optimal 
sets of machine geometrical dimensions maximizing the no-
load flux. The optimization variables of the machine consist 
in 8 geometrical form factors, in connection with the CTFM 
geometry. Expressions of the 8 form factors ksmag, krot, kap, 
kcp, krp, khb, khp and kpn are: 

݇௦௠௔௚ = ௔ܮ ௔ܪ = ݏݏ݄݁݊݇ܿ݅ݐ ݐ݁݊݃ܽ݉ ݉ܽ݃݊ ⁄⁄ݐ݄݄݃݅݁   
݇௥௢௧ = ௔ܮ ௖ܮ = ݏݏ݄݁݊݇ܿ݅ݐ ݐ݁݊݃ܽ݉ ⁄⁄ݏݏ݄݁݊݇ܿ݅ݐ ݎ݋ݐܽݎݐ݊݁ܿ݊݋ܿ  
݇௔௣ = ௚௣ܪ ௔ܪ = ݋ݐ ݐ݄݄݃݅݁ ݐ݋݋݂  ⁄⁄ݐ݄݄݃݅݁ ݐ݁݊݃ܽ݉  
݇௖௣ = ௣௣ܮ ௖ܮ = ݏݏ݄݁݊݇ܿ݅ݐ ݌ܽ݃ݎ݅ܽ ݐ݋݋݂ ݋ݐܽݎݐ݊݁ܿ݊݋ܿ ⁄⁄ݏݏ݄݁݊݇ܿ݅ݐ   
݇௥௣ = ௚ܲ௣ ௥ܲ = ݄ݐ݌݁݀ ݌ܽ݃ݎ݅ܽ ݐ݋݋݂ ݋ݐܽݎݐ݊݁ܿ݊݋ܿ ⁄⁄݄ݐ݌݁݀   
݇௛௕ = ௕௣ܪ ௚௣ܪ = ݋݂ ݌ܽ݃ݎ݅ܽ ݄݁ݐ ݎܽ݁݊ ݐ݄݄݃݅݁  ⁄⁄ݐ݄݄݃݅݁ ݐ݋݋݂ ݈ܽݐ݋ݐ  
݇௛௣ = ௣௣ܪ ௚௣ܪ = ݁ݎ݋ܿ ݄݁ݐ ݎܽ݁݊ ݐ݄݄݃݅݁ ݐ݋݋݂ ⁄⁄ݐ݄݄݃݅݁ ݐ݋݋݂ ݈ܽݐ݋ݐ  
݇௣௡ = ௡ܮ ௣௣ܮ = ݏݏ݄݁݊݇ܿ݅ݐ ݁ݎ݋ܿ ⁄⁄ݏ݄݁݊݇ܿ݅ݐ ݌ܽ݃ݎ݅ܽ ݐ݋݋݂  

5 other dimensions, such as the rotor external diameter Ra, 
the airgap length e, the machine depth Pr, the pole pair 
number p and the winding area Abob have been set as fixed, 
input parameters of the optimization problem. Several 
geometrical constraints are also considered to ensure that 
every design is physical (ex: 0 < ksmag <1). The optimization 
process (Fig. 4), can be summed to the following 4 steps: 

 

 
Fig. 3. Main dimensions and variables used for the design. 



  

CTFM dimensions before no-load 
flux optimization 

Ra 1000 mm 
e 0.80 
Pr 100 mm 
p 100 
Abob 5000 mm² 
ksmag 0.70 
krot 0.40 
kap 0.60 
kcp 1.10 
krp 0.60 
khb 0.30 
khp 0.15 
kpn 1.5 
µcore 2870 
µconc 205 
µfoot 154 
Core 638 µWb 

Fig. 5. Optimization and input parameters of a CTFM design before no-load 
flux maximization. No-load flux per pole Core is given as well. 
 

CTFM dimensions obtained after 
no-load flux optimization 

Ra 1000 mm 
e 0.80 
Pr 100 mm 
p 100 
Abob 5000 mm² 
ksmag 0.13 
krot 0.25 
kap 0.46 
kcp 1.11 
krp 0.76 
khb 0.05 
khp 0.05 
kpn 1.84 
µcore 5160 
µconc 156 
µfoot 90 
Core 1240 µWb 

Fig. 6. Optimization and input parameters of a CTFM design obtained after 
no-load flux maximization. Maximized no-load flux Core is given as well. 

 Step 1: Inside the optimization loop, the reluctance model 
of section II is used to determine the motor saturated no-load 
flux (Eq. (2)) as well as the other 6 branch fluxes, from an 
initial set of input (Ra, e, Pr, p and Abob) parameters and from 
optimization parameters (ksmag, krot, kap, kcp, krp, khb, khp kpn). 
 Step 2: A temporary solution is then found with Excel’s 
solver which maximizes the no-load flux with an initial set 
of values for the correction factors. 
 Step 3: A 3D FE simulation is performed considering the 
machine geometrical parameters of this temporary solution. 
The output of this step is the computation of the main flux 
and leakage fluxes with the FE software. 
 Step 4: The 5 correction factors, kleakR, kleakS, ksided, ksidep 
and kgap applied to the reluctances RleakR, RleakS, Rsided, Rsidep 
and Rgap are modified in order to compensate the errors in 
the analytical model. 
 

These 4 steps (1-2-3-4) are then started with the new 
values for the correction factors. The whole process is 
repeated until negligible errors are found between the fluxes 
calculated with the model and those computed from 3D-FE, 
giving a final, optimized set of geometrical parameters, 
which maximize the no-load flux in the machine, for a given 
set of input values (Ra, e, Pr, p and Abob). 

B.   CTFM optimization example 

Fig. 5 presents an illustration of one pole pair of a non-
optimized CTFM as well as its main dimensions as an 
arbitrary starting point. The latter have been selected for the 
purpose of this example. The design process described in 
this paper has been applied to this particular machine: the 
values of ksmag, krot, kap, kcp, krp, khb, khp and kpn in Fig. 5 have 
been considered as initial values of the optimization. 
Following the procedure shown on Fig. 4, an optimal set of 
these 8 parameters maximizing the machine no-load flux has 
been found. These optimal parameters as well as an 
illustration of the optimized design are shown in Fig. 6. 

 Optimized design dimensions and performances 

A 3-D FE simulation has been performed to evaluate the 
no-load flux linking the winding of the CTFM before the 
optimization giving a flux of 638 µWb, as shown on the 
table of Fig. 5,. At the end of the optimization process, the 
optimized design presents a value of no-load flux of 1240 
µWb (Core in Fig. 6). With a flux almost twice higher, this 
solution proves that the method substantially increases the 
no-load flux, as expected. Resulting relative permeabilities 
μconc, μfoot and μcore of the initial and optimal designs used in 
the analytical model are also given in tables of Fig. 5 and 6. 

 Variation of the optimized CTFM parameters 

Fig. 7 presents the variation of the optimized CTFM 
parameters ksmag, krot, kap, kcp, krp, khb, khp and kpn during the 
design process. One can notice that these parameters rapidly 
reach a constant value. Parameters ksmag, krot, kap, kcp, krp, khb 

and khp only require 2 iterations to reach a constant value 
when kpn requires 3 iterations. After 3 iterations, optimized 
parameters do not evolve anymore. This observation helps 
us to conclude that an optimal CTFM design has already 
been found after 3 iterations of the design process. The 2 last 
iterations mainly consist in finding correction factor values 
validating the model results as confirmed later by the 
observation of Fig. 8 and Fig. 9. The geometrical parameter 
values of the final solution are ksmag = 0.13, krot= 0.25, kap= 
0.46, kcp= 1.11, krp= 0.76, khb= 0.05, khp= 0.05 and kpn= 1.84 
corresponding to the values presented in the table of Fig.6. 

 
Fig. 4. Flowchart describing the optimization process employed to maximize 
the CTFM no-load flux  

 
 
 
 

 



  

 Variation of the FEA and analytical model estimated 
no-load fluxes during the design process 

The graph presented in Fig. 8 shows the variation of the 
optimized no-load flux per pole Core estimated with the 
analytical model over the whole design process. It also 
presents the corresponding no-load flux obtained from FEA 
used for validation in the error compensation process. Fig. 8 
helps to better understand how the CTFM design method 
works. At optimization iteration #1, a first set of parameters 
maximizing the no-load flux has been found. A first FE 
simulation is then performed to validate the fluxes calculated 
with the model, considering the optimal parameters found. 
At optimization iteration #1, one can clearly notice that a 
huge difference exists between the no-load flux calculated 
analytically and the one obtained from FEA: indeed, a 
difference of 68 % between the 2 fluxes can be observed. 
Therefore, corrections factors are calculated and applied to 
the model to minimize the model errors. At optimization 
iteration #2, a new set of parameters has been found 
considering the correction factors calculated at the previous 
step. A second FE simulation is performed and it can be 
noticed that the difference between the analytical and FEA 
no-load fluxes has been reduced to 13 %. New values of 
correction factors are then calculated and the whole process 
repeats until the errors between analytical and FE results are 
found negligible (< 1 %). Fig. 8 shows that the whole design 
process converged rather quickly: 5 iterations with the FE 
software were sufficient to minimize the analytical model 
errors and to validate the optimal solution found. After 5 
simulations, the no-load flux obtained analytically equals the 
no-load flux computed with FE  

 Variation of the model fluxes errors 

The graph presented in Fig. 9 shows the variation of the 
difference observed between the no-load flux Core obtained 
with the analytical model and the same flux computed with 
FEA during the design process. As detailed in [1], correction 
factors are calculated from a least-square process minimizing 
the errors observed between the fluxes calculated 
analytically and the fluxes obtained from FEA. The graph in 
Fig. 9 also shows the sum of the squared errors made while 
estimating the 7 fluxes of the reluctance networks. Curves in 
Fig. 9 clearly show that the error compensation mechanism 
is rather efficient: after 5 iterations with the FE software, the 

sum of squared fluxes errors have been reduced to 0.0026. 
Similarly, the error on Core went from 68 % after the first 
iteration and FE simulation to 0.3 % after the 5th iteration. 

 Variation of the correction factors 

During the design process, correction factors kgap, kleakR, 
kleakS, ksided and ksidep values are adjusted by a least-square 
method to compensate for the model errors. Fig. 10 presents 
the variation of the 5 correction factors over the design 
process considered in this example. Initialized at 1 before the 

Fig. 7. Variation of the 8 optimized CTFM parameters ksmag, krot, kap, kcp, krp, 
khb, khp and kpn during the design process. 
 

 
Fig. 8. Variation of the saturated no-load fluxes estimated analytically and 
with FEA during the whole design process. 

 

 
Fig. 9. Variation of squared fluxes errors and error made on the no-load flux 
estimated analytically during the design process. All errors correspond to the 
difference in % observed between model and FEA fluxes (1% = 10-2). 

 
Fig. 10. Variation of the correction factors kgap, kleakR, kleakS, ksided and ksidep

during the design process. 
 



  

process, their values change rapidly after the first FE 
simulations. After 2 iterations only, factors ksided and ksidep 
have already reached their final value respectively at 0.69 
and 0.26 for the design considered here. However, one can 
notice that factors kgap, kleakR and kleakS need 5 iterations 
before stabilizing. In the design example considered in this 
section, final values for correction factors kgap, kleakR, kleakS, 
ksided and ksidep are respectively 1.15, 1.08, 0.06, 0.69 and 0.26. 

 Design method computation time 

With the example considered here, 5 optimization 
iterations were required for a total of 5 FE simulations. It is 

the author’s experience that 4 to 6 iterations are generally 
sufficient for a whole CTFM design process. The time 
required for the maximization of a CTFM no-load flux 
mostly depends on the number of FE simulations required, 
the FE mesh settings but also the size of the CTFM. For FE 
simulations, a particular attention is paid to refine the mesh 
in airgap and leakage regions for sufficient accuracy. In the 
example presented here, a mesh containing more than 
730000 elements has been considered. Run on a 2.61 GHz 
Athlon® processor, each FE simulation requires almost 15 
minutes. The analytical determination of the saturated no-
load flux as well as the optimization do not require more 
than 1 minute per pass. Therefore, the design process total 
duration for the example considered here is about 80 
minutes. Such a computation time is rather low if one 
considers that the method provides an optimal FE-validated 
CTFM design solution. 

 Optimality of the solutions obtained 

The question of the optimality of the solutions obtained 
with the method described in this paper should be addressed. 
In other words, it must be verified if the optimization 
method and the analytical model are efficient enough to 
avoid convergence to local optimum in the solution space. 
As there is no evident mathematical way to prove this, a 
more practical approach has been followed. 

8 different CTFM optimization parameter sets (ksmag, krot, 
kap, kcp, krp, khb, khp and kpn) have been selected as initial 
parameters for 8 design processes. Ra = 1000 mm, e = 0.8 
mm, Pr = 100 mm, p =100 and Abob = 5000 mm², have been 
chosen as fixed input parameters. These latter are similar as 
those of the design example previously described (see tables 
in Fig. 5 and Fig. 6.). The 8 initial optimization parameters 
sets have been selected in order to cover a wide space of 
solutions during optimizations: they represent 8 CTFM 
designs with different shapes and dimensions. Fig. 11 
presents illustrations of these 8 initial designs. Fig. 12 shows 
a graph representing their corresponding 8 initial 
optimization parameters sets (Design 1 to Design 8). 

A part of the optimization method of this paper has been 
applied to the 8 initial CTFM designs with the parameters 
presented in Fig. 12. The analytical procedure described 
above has been used to determine 8 optimal sets of 
parameters (ksmag, krot, kap, kcp, krp, khb, khp and kpn) 
maximizing the saturated no-load flux starting with the 8 
initial designs. Same optimization constraints have been 
adopted for the 8 optimization problems. 

The corresponding 8 optimal sets of parameters after the 
no-load flux maximization are shown in Fig. 13 (Design 1 to 
Design 8). One can notice that the 8 optimization problems 
nearly converged to the same solution: the same parameter 
set (ksmag = 0.11, krot= 0.19, kap= 0.25, kcp= 1.06, krp= 0.77, 
khb= 0.05, khp= 0.05 and kpn= 1.84) has been found as the 
optimal set maximizing the no-load flux starting from 8 
different initial parameter sets. Only small biases are 
observed between the designs: for example, the optimal 
value of ksmag has been found equal to 0.11 for Design 1 
while it converged to 0.10 for Design 8. The optimal 
parameters set found corresponds to the one obtained with 
the model at FEA iteration #1 in Fig. 7 before the first error 
compensation. As the same optimal parameter set has been 
found since the first design step for the 8 designs, it is 

 
Fig. 11. 8 CTFM designs chosen as initial designs before optimization. 
 

 
Fig. 12. CTFM parameters ksmag, krot, kap, kcp, krp, khb, khp and kpn chosen as 
initial values of 8 design processes. 
 

 
Fig. 13. CTFM optimal parameters ksmag, krot, kap, kcp, krp, khb, khp and kpn of 8 
designs found after no-load flux maximization before error compensation. 



  

expected that similar correction factors will be obtained 
during the design process. Similarly, same final optimal 
parameters are expected at the end of the design process in 
the 8 cases. It is therefore not necessary to continue the 
design process until FEA iteration #5. As this observation 
does not constitute a proper mathematical proof, it still 
provides us good confidence on the optimality of the 
solutions found with the design method. 

IV.   CONCLUSION 

In this paper, we introduced an approach to address the 
challenge of modeling and optimizing TFMs. A new design 
method is presented and applied to maximize the no-load 
flux of a CTFM with hybrid stator. An error compensation 
mechanism combined to an analytical reluctance model is 
proposed as a solution to overcome inherent inaccuracies of 
TFM analytical models.  

After a brief introduction on the model along with the 
compensation mechanism described in a previous 
communication [11], optimization aspects of the design 
method have been presented. A case of study of CTFM no-
load flux maximization has been investigated. The method 
has been used to find an optimal set of geometrical 
parameters considering one particular CTFM design. It has 
been found that only 5 iterations with the FE software were 
required to compensate for the analytical model errors and 
validate the optimal solution found. After optimization, a 
100 % increase in no-load flux has been observed. 
Variations of the correction factors and model errors during 
the optimization process have been presented as well. 
Finally, the optimality of the solutions found with this 
method has been discussed. Optimization results obtained 
gave us good confidence about the convergence and the 
optimality of the solution found using this method. 

Ongoing works are now focused on developing the model 
and adapting the design method for CTFM armature flux and 
torque prediction. Even if the method presented in this paper 
has been applied to the CTFM topology, a similar approach 
could also be considered for the design of other TFM 
configurations or machines for which it is difficult to derive 
analytical models. 
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