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Abstract: The growing interest in reducing fuel consumption and gas emissions provides an incentive for the automotive industry
to innovate in the field of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). The two embedded power
sources in these vehicles require an intelligent controller in order to make the best decision on the power distribution. Actually
these controllers, often called energy management systems, are very important and greatly influence the achievable fuel economy.
Compared with an HEV, a PHEV allows battery discharge over a complete trip. As a consequence the optimal control of a PHEV
implies a stronger dependence on the total driving cycle. Many authors have studied the possibility of fuzzy-based systems for
both HEV and PHEV as they have proved to be robust, reliable and simple. However, classical fuzzy rule-based strategies
demonstrate a lack of optimality because their design is focused on the actual vehicle state rather than the driving conditions.
This study proposes a blended control strategy based on fuzzy logic for a PHEV. The proposed controller is fed with driving
condition information in order to increase the controller effectiveness in every situation. The efficiency of the proposed

controller is demonstrated through simulations.

1 Introduction

Hybrid electric vehicles (HEV) and plug-in hybrid electric
vehicles (PHEV) are one of the most promising solutions to
reduce the environmental impact of individual transportation.
In a parallel hybrid configuration, the motoring shaft is
shared by an internal combustion engine (ICE) and an
electric motor. The intrinsic architecture of a parallel
HEV or PHEV requires the implementation of an energy
management system (EMS) that will determine the power
split distribution effectively between the engine and the
electric motor. A very important purpose of the EMS is to
guarantee that the battery state of charge (SOC) is kept
within an acceptable range while improving the fuel
economy over a complete trip.

The state of the art in this field proposes many solutions
that have their own advantages and drawbacks. For both
HEV and PHEV, the literature roughly classifies the
different control strategies into two categories which are
‘rule-based strategies’ and ‘optimisation-based strategies’
[1]. The rule-based strategies are subdivided into
deterministic rule-based [2-6] and fuzzy rule-based
methods. The optimisation-based strategies are based on a
mathematical formulation of the energy management
problem. In particular, global optimisation techniques allow
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finding the optimal power split value for each time of a
predefined driving cycle. Such an optimisation problem is
likely to be non-linear and constrained and consequently
dynamic programming (DP) is a good candidate for solving
the problem [7, 8]. Nevertheless, the strong computational
complexity of DP is a significant drawback for a real-time
application. Consequently, some authors proposed convex
optimisation that requires much lower computational
intensity [9]. However, all the parts of the vehicle
powertrain have to be modelled by quadratic or linear
functions for the convex optimisation to be performed.
Equivalent consumption minimisation strategies (ECMS)
are local optimisation by nature and therefore need less
computation time compared with DP. It is primarily based
on the heuristic that electrical energy can be expressed as
an equivalent fuel quantity by introducing an equivalence
factor. Some authors proposed to use ECMS for real-time
applications [10, 11] and observed that fuel minimisation
and final SOC boundary condition can be achieved by a
careful adjustment of the equivalence factor that strongly
depends on the whole driving cycle. Moreover, some
authors used Pontryagyn’s minimum principle (PMP) to
perform global optimisation [12] and showed the close
mathematical relation between the costate of the PMP
problem and the equivalence factor of the ECMS. They also
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showed that under assumptions on the battery behaviour, a
single constant value for the equivalence factor can lead to
fuel consumption very close to the achievable minimum.
Nevertheless, the optimal value depends on the driving cycle.

Fuzzy rule-based strategies have proven to increase the
vehicle performance compared with the deterministic
rule-based strategies [13]. Simple fuzzy rule-based
strategies have been proposed by several authors [14-20].
They aim at controlling the SOC while favouring efficient
operation of the powertrain. The SOC is the primary input
and is combined with other vehicle inputs such as the
required torque, required power, vehicle speed, vehicle
acceleration, motor speed and ICE speed. This kind of
approach offers computational simplicity but requires
human expertise and a ‘trial and error’ process that lead to
non-optimal performances. It is nonetheless possible to
reduce human impact by adopting optimisation techniques
directly on fuzzy systems. One solution is to intelligently
choose the fuzzy rules by the straightforward observation of
off-line computed DP results [21]. Genetic algorithms have
also been investigated for the optimisation of the
membership functions of the fuzzy-logic controller [22-24].
A similar approach consists in using an adaptive neural
fuzzy inference system to optimise fuzzy memberships and
rules [25] with a neural network that needs previously
computed optimal control sequence on a predefined driving
cycle for neural network training. Optimisation of fuzzy
rules is performed off-line on predefined driving cycles.
The resulting fuzzy logic controller then offers
quasi-optimal performance on the considered driving cycles
but may remain non-optimal for other speed profiles.
Consequently some authors propose to combine optimised
fuzzy rule-based strategies with real-time driving style
recognition [26] or driving condition recognition [27-29].
The driving style recognition aims at estimating the driver’s
behaviour on the acceleration pedal while the driving
condition recognition is responsible for the road type
(urban, arterial, highway) and traffic level estimation. The
obtained controllers are then usable in real-time and have
the ability to adapt themselves to the current driving scenario.

A significant difference exists between the power split
management of an HEV and that of a PHEV with respect to
their SOC. Since the battery of an HEV cannot be charged
through an external plug, its EMS uses a charge sustaining
(CS) strategy in order to maintain the SOC around a constant
value. On the contrary, a PHEV will benefit from an external
plug and will be charged during its off state. Hence, in a
PHEV, the end-of-trip SOC will be lower than its initial
SOC. The question remains, as to how fast should the battery
depletion occur? Global optimisation shows that whenever
the all-electric range (AER) of a PHEV is exceeded, a
blended battery depletion strategy is preferred where the ICE
and the electric motor are used together before the low SOC
level is reached. Fuzzy-based strategies for the control of a
PHEV usually deplete the battery by making the vehicle
work like an electric vehicle (EV) during the first part of the
trip and then maintain the SOC to a constant level, much like
an HEV [30, 31]. As a consequence, there is a motivation to
propose a fuzzy-based blended control strategy as it can lead
to a compromise between computational simplicity, real-time
use and fuel minimisation.
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This paper proposes a fuzzy-based EMS that is able to
perform a blended strategy by using past and current
driving information together with the expected trip distance
in an original manner. Moreover an original way of
optimising fuzzy characteristics by using DP is proposed
and the results show that our controller remains simple and
reliable while the use of driving information allows an
adaptive control relative to the different driving conditions.
Section 2 will present the powertrain topology, Section 3
will describe the analyse of the optimal control of the
vehicle provided by DP on several driving cycles, Section 4
will present the developed real-time controller and finally
Section 5 will expose the simulation results.

2 Description of the vehicle

The vehicle described in this paper is a three-wheel roadster
that already exists in its conventional form (with only an
ICE). In order to reduce its fuel consumption without
sacrificing its autonomy, it has been proposed to develop a
plug-in hybrid form of this vehicle. The challenge is
therefore to modify the complete powertrain without
altering the vehicle design too much. The constraints of
space are a major concern and they greatly influenced the
choices made for the powertrain architecture. A schematic
of the vehicle is provided in Fig. 1. A parallel topology has
been chosen because a preliminary study has proved that
this topology would take less space than a series
architecture. The specific geometry of the vehicle requires a
primary and secondary drive for the disposition of the
powertrain components. The battery pack can be
regenerated by electrically braking the vehicle or by
overpowering the engine. In all cases, the power
contributions from the two power sources have to satisfy
the driver’s demand. The torque and speed equations can be
written as

N, N,
Nw — ICE — e (1)

lpr‘lgb(k)'lsec'lﬁn lmg'lﬁn

(see (2))

where Ny, Nicg and N, are, respectively, wheel, engine and
motor speeds, Ty, Ticg and T, are, respectively, wheel,
engine and motor torques, ipy, isecs Img and ig, are,
respectively, primary, secondary, motor and final drive
ratio, iy, is the gear ratio of the gearbox which depends on
the selected gear number k. The gearbox is composed of six
different gears. 7, Msees NMmg> Mgp and 7y, are the drive
efficiencies, Py, P. and Pjcg are wheel, motor and engine
mechanical power and sg is the sign function.

The electrical powertrain is composed of a battery pack that
provides power to a voltage source inverter using IGBTs, the
latter being able to drive a permanent magnet synchronous
motor (PMSM). For a matter of space in our vehicle, two
major choices were made. The electrical powertrain does
not include a DC/DC converter in order to stabilise the bus
voltage. Consequently, the inverter sees a variable bus
voltage depending on the required battery current. This
affects the whole electrical powertrain efficiency. Moreover

1 +sg(P,) 1

T, (1 — sg(P,)

Lfin
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Fig. 1 Schematic of the parallel plug-in hybrid electric roadster

there is no clutch on the electric motor shaft which means that
the electric motor is always coupled to the wheel.

The complete vehicle model was established in a previous
work [32], the mechanical model provides an estimation of
the required torque based on the information of the vehicle
speed, the engine is simulated using a map illustrated in
Fig. 2 that provides instantaneous consumption for every
speed and torque and finally the electrical powertrain was
characterised by its mathematical equations. The vehicle
specifications are provided in Table 1. The smallness of the
battery pack is caused by the reduced available space in the
vehicle. The battery is composed of Li-lon cells A123
ANR26650m1A which are modelled by a variable voltage
source in series with an internal resistance. The open circuit
voltage value depends mainly of the cell SOC and follows
the equation that can be found in [33]. The internal
resistance value has been characterised regarding the cell
temperature, current and SOC following the experimental
protocol described in [34]. Finally, some other correction
parameters proposed in [35] have been added in order to
account for cell terminal voltage and state of discharge
variations with cell current and temperature. Even if this
model is simple and accurate enough for the purpose of the

112000 vehicle simulation, a more accurate first order RC model
could have been used instead [36].
10000
)
3 8000 3 Analysis of the optimal vehicle behaviour
=
< 6000 3.1 Dynamic programming algorithm
s
)
- 4000 Since DP is a well-known tool that has been often used in
literature for the problem of energy management of HEV
2000 and PHEV, this paper will not explain the DP theory in
detail. A mathematical explanation of the DP algorithm can
2000 3000 4000 5000 6000 7000 be found in [37] In our case, DP has been used to find the
ICE Speed (rpm) optimal values of the ICE torque 7jcg and the gear number
k that minimise the global fuel consumption over a
Fig. 2 ICE instantaneous consumption (g/h) complete driving cycle. For each time of a given driving
Table 1 Vehicle specifications
ICE 4 strokes - 2 cylinders
engine displacement 600 cm®
idle speed 1600 rpm
PMSM maximum speed 8000 rpm
number of pole pairs 5
d-axis inductance 90 uH
g-axis inductance 90 uH
stator windings resistance 15 mQ
magnet flux amplitude 0.0543 Wb
Inverter IGBT rated collector current 550 A
rated On-state collector-emitter voltage 1.35V
threshold voltage 0.8V
Diode rated forward current 550 A
rated forward voltage 1.35V
threshold voltage 09V
Battery embeddable energy 2.5 kWh
rated output voltage 363V
cell capacity 2.3 Ah
Vehicle dynamics weight 565 kg
drag coefficient 0.537
frontal area 1.19 m?
first order rolling resistance coefficient 0.0155
second order rolling resistance coefficient 7.93x10™*s/m
third order rolling resistance coefficient 3.17 x 107 s?/m?
Vehicle geometry length 2667 mm
width 1506 mm
height 1145 mm
wheel base 1714 mm
ground clearance 115 mm
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cycle, the electric motor torque gy can be found from (2)
knowing the optimal values of Ticg and k. The optimal
values of Ticg and k are chosen within a range defined by
their respective constraints.

Finally, an arbitrary value between 30 and 95% is imposed
for the initial SOC and since the goal is to minimise the fuel
consumption, the final SOC is imposed at 30%. It is
considered that the degradation of the battery is accelerated
when the SOC is under 30%. However DP allows the SOC
to temporarily evolve between 20 and 30% during a driving
cycle. A SOC above 95% or under 20% is not allowed by DP.

3.2 Dynamic programming results analysis

Since DP requires long computation and also the precise
knowledge of the future driving cycle, it cannot be used
directly in real-time hence it was decided to run it offline
on the 11 Facility-Specific Drive Cycles developed by
Sierra Research Inc. [27] which describe vehicle operation
over different types of roadway (arterial, local and freeway)
with several facility and traffic levels, called level of service
(LOS).

The purpose of this offline DP solving was to observe the
optimal behaviour coming from the DP results in order to
build embeddable control laws that will mimic this optimal
behaviour. Since there is no clutch on the electrical
powertrain, the vehicle can be run in only two main modes
which are pure electric or hybrid. Also, the purpose of the
DP results observation is to try to establish two laws

e Law 1 is responsible for the power split decision during
hybrid mode.

e Law 2 is responsible for the transition between pure
electric and hybrid mode.

As an example, this section provides the results obtained
after the DP algorithm was run on the arterial roadway with
LOS A-B (ART LOS A-B) which corresponds to the lowest
traffic and facility level for an arterial roadway. The initial
SOC was imposed at a level of 50% in order to be able to
observe a significant portion of hybrid operation. DP results
will be different for another vehicle but the proposed
methodology remains applicable to all cases.

To deal with the first law, the optimal engine load points
coming from the DP results were plotted for every speed

=
=

d
i

ICE torque (Nm)
(5]
=]

S

0 2000 4000 6000 8000
ICE speed (rpm)

Fig. 3 Optimal ICE loads points (circles) and maximum efficiency
curve (solid line) on ART LOS A-B
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Fig. 4 Comparison on ART LOS A-B between the required power
(dashed curve) and the motor optimal power (solid curve)

The power threshold is illustrated by the solid line

cycles. Fig. 3 shows this plot for the example of ART LOS
A-B. Each red dot represents an operating point as issued
from the DP optimisation sequence. In each speed cycle, it
was observed that the engine should always work around its
maximum efficiency in hybrid mode.

Now, the question remains as to when pure electric or
hybrid modes should be selected. In order to visualise the
optimal working mode chosen by DP, the required power to
the wheel and the optimal electric motor power computed
by DP were compared. Fig. 4 shows this comparison for
the example of ART LOS A-B. The lines where the power
of the electric motor matches the vehicle required power
indicate that the optimal working mode is pure electric and
the engine is turned off. On the contrary, hybrid is the
optimal mode when the power from the electric motor is
maintained below the vehicle required power. On Fig. 4, it
can be observed that the hybrid mode is chosen by DP as
soon as the required power is above a given power
threshold Pg,. In other words, when the vehicle required
power is under a threshold Py, the optimal working mode
will be pure electric. This observation can actually be made
on every driving cycles with different level of Py,. It will be
the core of the mode transition management of the EMS
controller.

The absence of a DC/DC converter between the battery and
the inverter and the need for a flux weakening current at
higher rotational speeds will increase the power losses in
the whole electrical powertrain when high mechanical
power is required. Examining the results from the DP
optimisation of Fig. 4, this can explain why the electric
motor operates in a relatively low range of power. More
interestingly, the different results showed that the above
mentioned power threshold can be observed for every speed
cycle but varies with the type of driving pattern, the initial
SOC and the length of the trip. Generally speaking, Py,
increases for high speed cycles and decreases for low
speed/urban cycles. At the same time, the power threshold
will naturally increase for higher initial SOC in order to
favour pure electric mode and battery discharge. The choice
of a Py, value by simple observation of the DP results can
be inaccurate hence a function f'was introduced, expressed as

f(Pth) = ’Soctar - SOCf| (3)
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Fig.5 SOC comparison on ART LOS A-B between DP (black) and
the P,,-based optimisation (grey)

where SOC,,; is the targeted final SOC of 30% and SOC; is
the final SOC which will be obtained using a certain value
of Py, on a given speed cycle. The aim will be to minimise
f regarding Py,. As the function is strictly monotonic, it is
possible to use a simple and fast binary search. The
minimisation will assure a final SOC close to 30% and the
intrinsic nature of the transition threshold Py will assure a
fuel consumption close to the achievable minimum. As an
example, the optimal performances obtained with DP and
the performances obtained using the proposed Py,-based
optimisation were both compared on ART LOS A-B. The
comparison on SOC evolution is illustrated in Fig. 5, a fuel
consumption of 2.31 L/100 km was obtained with DP while
the proposed optimisation yielded 2.47 L/100 km.

4 Controller design

Firstly, in the light of the ICE load points observation
illustrated in Fig. 3, the proposed controller will implement
law 1 with the use of two 2D maps which will impose Ticg
and k in order to maximise the ICE efficiency for every
possible vehicle speed and demanded torque.

These 2D maps form the hybrid mode of the controller.
Whenever hybrid mode is chosen, the engine torque and
gear number will be selected so as to maximise the ICE
efficiency. The right power level should then be imposed to
the electric motor in order to satisfy the torque requirement
of the driver.

Law 2 will be implemented using the power threshold Py,.
The vehicle will operate on hybrid or electric mode when the
required power is, respectively, above or under Py,. In this
case, the value of Py, will be computed using a fuzzy logic
controller.

As the optimal power threshold depends on the driving
conditions, the fuzzy logic controller should retain some
form of driving pattern recognition. In this paper, three
driving patterns are used, corresponding to ‘Arterial LOS
A-B’, ‘Freeway LOS A-C’ and ‘Freeway LOS G’. They
cover a wide speed range and have very different speed
distribution profiles. A histogram of vehicle velocity for the
3 speed cycles was plotted and approximated using
Gaussian distributions. These distributions will be used to
build the membership functions of the speed input for the
fuzzy logic controller as will be shown later.

As presented earlier, the power threshold varies with the
initial SOC and the total length of the trip. In order to
reduce the complexity of the problem the ‘global discharge
rate’ was introduced and defined by (4) as

The function f will help in the design of the controller as dis.. = SOCiyi — SOC,, &)
will be shown in the next section. rate I
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Fig. 6 Membership functions for speed input (above) and global discharge rate input (under)
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where SOCiy; is the initial SOC and /; is the length of the trip.
According to the above definition, the global discharge rate is
expressed in %/km. For a given facility-specific driving cycle
with a defined length, the global discharge rate will be
determined by the initial SOC only. As explained in
Section 3, the targeted final SOC is 30%. Consequently, the
global discharge rate will increase with the initial SOC.
Above a certain level, the AER of the vehicle will be
reached and there will be no need for transition
management anymore since it will be possible to make the
whole trip using only the electric motor. Furthermore, it
was found that the AER was reached above 4.80%/km for
FW LOS G, 5.43%/km for ART LOS A-B and 7.93%/km
for FW LOS A-C. Consequently there is an optimal Py, for
each of the three driving cycles and for each values of
global discharge rate between 0%/km (CS) and the
maximum level that was previously determined. Finally, it
was decided to find the optimal value of Py, by minimising
f on each speed cycle and for the global discharge rate
values 0 (VVL), 1, 2, ..., 8%/km (VVH).

Based on this analysis, the fuzzy logic controller can be
designed. It will have two inputs and one output, the first
input being a moving average of the past speed. As it can
be seen on Fig. 6, the membership functions for the speed
are defined by the previous Gaussian distributions. The
speed distribution for FW LOS A-C corresponds to the
membership ‘fast’, the one for ART LOS A-B corresponds
to ‘medium’ and the one for FW LOS G corresponds to
‘slow’. This way, the fuzzy logic controller can locate
current speed among the three speed distributions, and thus,
benefit from the past driving information to adapt the
control logic. The second input is the current global
discharge rate. It is computed by dividing the difference
between the current SOC and the targeted final SOC with
the remaining distance. Using this input, the controller will,
at any time of the trip, consider that the trip from the
current time until the end time is a new trip with a given
initial SOC. It will also assume that this new trip will
follow the driving pattern that was detected by analysing
the past data of the current trip. The memberships of the
global discharge rate input can be seen on Fig. 6 and cover
the range of discharge rate from 0 to 8%/km according to
the previous analysis.

The fuzzy logic controller is a Sugeno-type and the output
is the power threshold Pgy,. Each rule uses ‘and’ logic
operators and imposes a suitable value of Py, depending on
the inputs. An example of such rule would be

If Speed is ‘medium’ and GlobalDischargeRate is ‘L’
then Py, is 10 455 W.

Table 2 Fuzzy rules

Rate Speed

Slow, W Medium, W Fast, W
VVL 3937 7684 7523
VL 5250 8655 10 457
L 6562 10 455 12908
ML 7957 11341 15 094
M 9680 13728 17 106
MH 10 459 16 740 20125
H 10 459 19 095 21171
VH 10 459 19 095 23 556
VVH 10 459 19 095 32157
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management

The values of Py, in the rules are selected based on the
previous analysis using the minimisation of the function f.
All the rules are presented in Table 2. According to the
input values, membership degrees u are computed for each
fuzzy linguistic using the membership functions. Following
the example above, the implied membership degrees would
be up for discharge rate and Unedium for speed. The
computation of Py, requires the knowledge of the firing
strengths w; of all the rules. They are basically the weight
factors to apply to each rule. The operator ‘min’ has been
chosen as the inference method for the ‘and’ logic hence
the firing strength of the example rule will be w;=min(yy,
Umedium)- The firing strength being defined for all the rules,
the final power threshold will be computed using (5) as

N,
Lw; Py
Py = ©)
j=1 J

with N, the number of rules and Py, ; the power threshold
implied by the j™ rule.

60| _
—_ Fuzzy-based
2 blended strategy
S
o 50
g
/
401 Rule-based
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Fig. 8 SOC comparison on UDDS between DP (black),
fuzzy-based blended strategy (light grey) and rule-based control

strategy (grey)
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Table 3 Fuel consumption comparison on different driving
cycles

Driving Initial DP,L/ Fuzzy-based blended strategy
cyclename SOC,% 100 km
Final Fuel consumption,
SOC, % L/100 km
UDDS 80 1.89 30.1 2.01
HWFET 80 2.46 30.4 2.50
US06 80 3.44 32.2 3.54
NEDC 60 2.26 29.5 2.30

5 Simulation results

The proposed controller was integrated in the simulation tool
as illustrated in Fig. 7. The speed moving average was made
on the past 60s. The computation of the current global
discharge rate needed the feedback from the SOC and the
total distance of the trip which can easily be retrieved from
a GPS in a real-time application. The proposed real-time
controller was tested on the urban dynamometer driving
schedule (UDDS). Performances were compared with the
DP control strategy and also the rule-based power follower
strategy [3, 4]. The power follower does not have any
previous knowledge of the trip and makes the vehicle run
like an EV during the first part of the trip and later, enters
the CS strategy where the ICE provides the most important
part of the power while the SOC is maintained. Such a
strategy is commonly called EVCS. The initial SOC was
80% for the three strategies and the SOC comparison can
be seen in Fig. 8. A fuel consumption of 2.01 L/100 km
was obtained for the fuzzy-based EMS while the DP
algorithm showed a minimal consumption of 1.89 L/100 km
and the rule-based strategy yielded a fuel consumption of
2.62 L/100 km. A fuel consumption comparison between
DP and the proposed fuzzy-based blended strategy is
available in Table 3. The comparison has been made for
several driving cycles including UDDS. Using the
fuzzy-based blended strategy allows to reach a final SOC
which is close to the target of 30% but is not exactly 30%.
Consequently, for the comparison of Table 3, the final SOC
of DP was constrained to be equal to the final SOC
obtained with the proposed fuzzy-based EMS. Since NEDC
is a relatively short driving cycle, an initial SOC of 60%
has been imposed for NEDC in order to obtain a
meaningful result in terms of fuel economy.

6 Conclusion

Based on the DP results, a comprehensive methodology for
the design of a real-time fuzzy-based EMS was proposed
for a plug-in hybrid EV. The fuzzy-based EMS showed it
was able to perform a blended discharge strategy, which is
more suitable for a PHEV, by analysing the past speed of
the current trip and adapting itself to the current driving
pattern. The controller is easily embeddable and only needs
the total length of the trip. It was able to reduce the fuel
consumption over a classical rule-based strategy which does
not benefit from trip information. A reduction of 27% in
fuel consumption was observed with the proposed
methodology on a UDDS driving profile. The proposed
EMS also allows obtaining fuel consumption very close to
the achievable minimum computed by DP for several
normalised driving cycles. In case of an unknown trip
length, the proposed strategy would be adapted to perform
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EV operation followed by a CS operation based on the
proposed fuzzy control. In future works, it would be
interesting to evaluate the impact on fuel economy when
using such an adapted EVCS control strategy rather than
the proposed blended strategy.
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