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Abstract 

A permanent magnet-biased active magnetic bearing (PM-
AMB) is an efficient design of pure active magnetic bearing 
systems. This paper presents a digital decentralized double-
loop controller for a radial homopolar PM-AMB. The inner 
loop is for current control while the outer loop is the master 
one and is devoted for regulation the shaft position around the 
operating point despite the harmonic excitation forces due to 
the inherent rotor unbalance. The Spectrum Digital eZdsp 
F2812 board is used for control implementation. 
Experimental results are given to validate the performance of 
the system followed by calculation of the power consumed by 
the radial bearing. 

1 Introduction 

An active magnetic bearing (AMB) is a mechatronic system 
that have been widely used to achieve a contactless support 
for a spinning rotor. It is an inherently nonlinear and an open-
loop unstable system, thus a feedback control loop is a must 
to attain stability besides achieving a satisfactory 
performance. It is not surprising that most of the literature on 
AMBs concerns control schemes [1]. The commonly used 
control scheme for AMBs adopt a fixed bias current supplied 
to each coil to improve the linearity and dynamic 
performance, and to enable a single power amplifier per axis 
(less costly) if differential winding connection is adopted. 

Another challenge connected to AMBs is their power 
consumption. Although the losses are much lower than roller 
bearings, these losses can limit the operation in some 
applications such as flywheel energy storage systems and 
vacuum applications [2]. Copper losses which is proportional 
to the square of the current flowing in the coils have a key 
role in the power losses in magnetic bearings. Other losses 
such as iron losses are also proportional to the coil current. 
Therefore enhancing the energy efficiency of magnetic 
bearings depends on minimizing coil currents. 

There are two approaches to improve the energy efficiency of 
magnetic bearings [3]. For the first approach which adopts the 
software solution, various feedback control strategies which 

eliminate or reduce the fixed bias current have been proposed 
in order to minimize power losses [4], [5]. However besides 
the complexity of control schemes, lowering or eliminating 
the bias current could lead to poor dynamic performance and 
less robustness against disturbances so researchers studied  a 
variable bias current strategy as in [2]. The hardware solution 
is an alternative approach  which depends on employing 
permanent magnets [3], [6], [7]. In PM-AMBs, permanent 
magnets (PMs) provide the fixed bias flux while the control 
currents are used only for stabilization and damping 
vibrations. One of the first contributions to the design of PM-
AMBs is reported in [8][9].  

This paper discusses the digital implementation of a 
decentralized feedback control for a radial homopolar PM-
AMBs using the cascade control structure. In the paper, the 
PID controller is used in the outer loop for position control 
while the PI controller is used for the inner loop to control the 
current. The continuous time controller is then discretized to 
obtain its digital counterpart. The Spectrum Digital eZdsp 
F2812 board is used for control implementation. The main 
contribution to this paper is the application of a radial 
homopolar PM-AMB to support a spinning shaft with a 
larger-scale size and heavier weight compared to the majority 
of reported cases in literature [3], [7]–[11] as well as the DSP 
implementation of the cascade controller. The description of 
the employed system as well as a simplified mathematical 
model are given first. The discretization process is then 
explained. Experimental results are given to validate the 
effectiveness of the closed loop system under different 
operating conditions. 

2 System Description 

The radial PM-AMB has two lamination stacks of four teeth 
each. In between the two lamination stacks are located the 
PM segments, as described in [6], see Fig. 1. Each tooth is 
wound with a coil of N turns (N = 100) and these 8 stator 
coils are positioned along the vertical (4 coils) and horizontal 
(4 coils) axes, thus forming 4 electromagnet (EM) poles. The 
four EM coils for each of the two axis are connected in series, 
thus 4N coils per axis. Fig. 2 shows a picture of the test rig. 
The driven terminal of the shaft is supported by a mechanical 
ball bearing while the non-driven terminal is supported by the 
radial homopolar PM-AMB. The rotation is realized through 
an induction motor which is connected to the shaft by means 



2 

of a flexible coupling. Two single phase inverter circuits (one 
for each axis) are used to amplify the control current. The 
inverter is realized with a full H-bridge configuration 
consisting of four IGBTs with 30V DC-link because 
bidirectional current is needed for homopolar PM-AMB 
applications unlike pure AMBs which can employ half H-
bridge configuration. Sensors are a must to close the feedback 
control loop. Two position sensors are used; one to monitor 
the deviation along the horizontal axis while the other one to 
monitor the deviation along the vertical axis. The position 
sensors are of inductive type. Their linear span is from 0 to 2 
mm with a resolution of 1 μm. Most off the shelf current 
amplifiers of this type utilize an on-board analog PI control. 
In this work a digital current control is employed because of 
the flexibility in implementation and tuning compared to 
analog control. Hence two current sensors are also required 
for closing the current control loop. 

2.1 The Rotor-Bearing System Model 

The net electromagnetic force of a homopolar PM-AMB 
generated per axis can be formulated as [12]  
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where Ag is the air-gap area under one tooth, μo is the 
permeability of free space, Bpm is the air-gap flux density due 
to PMs while Bc is the air-gap flux density due to control 
coils. It is common to linearize the force formula around the 
operating point and use the following simplified expression 

 s cF k q k i    (2) 

where ks and kc are the positon stiffness and force to current 
gain respectively, q is the position signal deviation measured 
from the equilibrium point, i is the control current . 
It is assumed that the rotor is symmetric and rigid, and the 
axial motion is decoupled from the radial ones. Therefore the 
radial dynamics can be represented by 4 degrees of freedom 
(DOF) while the axial dynamics is 1-DOF which is not being 
of particular interest here. The equation of motion for a rotor 
suspended with a HMB and a ball bearing can be formulated 
as [13] 
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where 
p center of gravity coordinate 

M mass matrix 

G gyroscopic matrix 

B coordinate transformation matrix 
Cbb damping matrix 
Ks HMB stiffness matrix 
Kbb ball bearing stiffness matrix 
Ki force to current factor matrix 
Fun harmonic vibration forces matrix 

ω rotation speed in rad/s 

2.2 Electrical Dynamics 

 It is assumed that the total resistances and inductances of 
each of the two control windings are equal to R and L 
respectively. The electrical dynamics per axis in the system 
can be described as 
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where kg is the current amplifier gain, v is the control voltage. 

3 Digital Controller 

A single radial magnetic bearing is usually represented as a 
two mechanical DOFs system for rigid body rotor, where 
each DOF describes the deviations of the shaft in the 
horizontal and vertical directions. The dynamics of the two 
directions can be decoupled if the gyroscopic effect is not 
significant which is true here. Thus two separate feedback 
control systems can be designed for each mechanical DOF, 
this is the so called decentralized control approach. 

3.1 Cascade Control Structure  

The commonly used control structure for both electric drives 
and magnetic bearings is the cascade-loop control “or double-
loop control” [1][14]. The inner control loop is responsible 
for controlling the current. For AMBs, the outer control loop 
is the primary or the master loop and is devoted for 

 

Fig. 2 Radial HMB test rig: (1) Safety bearing, (2) Position 
sensor, (3) HMB, (4) Shaft, (5) Ball bearing, (6) Flexible 
coupling, (7) Induction Motor 

 

 
Fig. 1 Radial homopolar PM-AMB. 
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controlling the shaft position. The primary objective of the 
feedback control system is to stabilize the inherently unstable 
system first and then regulating the shaft position around the 
set-point. The input to the system is the position reference 
signal (usually the geometric center position of the bearing), 
and the output signal is the position of the shaft. Fig. 3 
illustrates the employed controller structure. 

3.2 Inner Control Loop 

The function of the inner loop is to regulate the measured 
current i to track the current reference signal iref generated by 
the outer control loop. The current error is amplified and used 
to calculate the corresponding duty cycle to control the output 
voltage of the H-bridge. By employing a high-gain controller, 
it is expected that the control current can follow accurately 
the current reference signal. It is unadvised to use a high 
proportional feedback gain (P-controller) only, because the 
current amplifier will be prone to saturation as well as the 
high tendency of noise generation. The typical approach is to 
use a proportional-integral (PI) for current control. The 
current error signal ei can be described as 

 i refe i i    (5) 

The continuous-time PI controller for the inner loop in the so-
called parallel form is formulated as 
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where cp is the proportional gain and ci is the integral gain for 
the inner control loop. And the Laplace equivalent form is 
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3.3 Outer Control Loop 

The outer loop, which is also known as position control loop, 
is the main controller. Since AMBs are inherently open loop 
unstable systems, the first goal of the main controller is to 
stabilize the system to the equilibrium point. The intuitive 
reasoning is to imitate the mass-spring-damper (MSD) 
system. Hence the controller is required to provide a restoring 
force similar to the mechanical spring as well as a damping 

component to dampen oscillations around the equilibrium 
point [1]. The simplest controller to achieve these 
requirement is the well-known proportional-derivative (PD) 
controller. For practical application, with a PD control there is 
always an offset error between the controlled variable and the 
set-point, no matter how high the P-gain. Addition of integral 
action is the remedy to this situation since it is able to 
eliminate this offset error. Hence the outer control loop for 
real systems becomes the proportional-integral-derivative 
control (PID). The position error eq between the position 
reference signal qr and the measured position signal q can be 
defined as 

 q re q q    (8) 

The PID controller for the outer loop in Laplace domain can 
be described as 
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where kp is the proportional gain, ki is the integral gain, and kd 
is the derivative gain for the outer control loop. The 
expression of the controller given in Equation (9) cannot be 
implemented in practice. First of all because the transfer 
function of the controller is not proper1. The other problem is 
that a pure derivative action is not allowable in practice 
because of the amplification of the high frequency 
measurement noise. The commonly used solution to these 
problems is to cascade the derivative term with a low pass 
filter. The practical form of PID controller can be written as 

 ( ) ( )
1

i d
o p q

k k s
U s k E s
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where τ is the time constant of the low pass filter. 

3.4 Controller Discretization  

The current controller and the position controller were 
described by Laplace transform in Equations (7) and (10) 
respectively. Since we want to implement these controllers in 
digital form, it is necessary to represent them in discrete-time. 
The commonly used approach for designing a digital 

                                                           
1 In control theory, a transfer function is proper if its numerator does not 
exceed its denominator.  
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Fig. 3 Digital double-loop control structure 
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controller for a continuous-time system is to first design an 
analog controller and then convert it into an equivalent 
discrete-time system that have a close approximate behavior 
[15]. There are various techniques from the signal processing 
field that can be used to convert an analog controller to its 
digital form counterpart. The method we are going to use is 
the approximation of differential equations by numerical 
integration. There are commonly three methods for this 
purpose, Forward Euler (FE), Backward Euler (BE), and 
Trapezoidal method or Tustin’s method. In this section we 
present the discretization of the position controller and the 
current controller can be done in a similar manner. 
Discretizing a continuous-time system by Tustin method can 
simply be done by replacing the Laplace variable s with 
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where Ts is the sampling time and z is the variable of Z-
transform. By following this rule, the integral and derivatives 
terms can be discretized respectively as follows 
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Since the proportional part is static, no discretization is 
needed and thus 

   pP z k   (14) 

and the complete outer-loop control signal would be 
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4  Experimental Results 

Table 1 presents the parameters of the system. Two 
decentralized feedback controllers are used to control the 

radial hybrid magnetic bearing. The control parameters for 
the inner and outer loops were initially selected in simulation 
using the system model described by (3) built in 
Matlab/Simulink environment and then finely tuned after 
extensive experimentation to  

cp = 3, ci= 10, kp = 3300, ki = 20000, kd = 8, τ=0.001 

The control algorithm is implemented using the Spectrum 
Digital eZdsp F2812 board. The board employs 
TMS320F2812 DSP which is a 32-bit DSP with fixed-point 
arithmetic and includes six dual PWM channels and 16 
ADCs. Analog anti-alias low pass filters with 1.5 kHz cut-off 
frequency are used to attenuate the effect of high frequency 
measurement noise. A sampling rate of 10 kHz is used. 

4.1 System Performance at 0 RPM 

Fig. 4 shows the horizontal and vertical displacements of the 
levitated shaft at steady state with 0 rpm rotation speed. The 
peak-to-peak (P2P) displacement for the horizontal axis is 
19.84 μm while for the vertical direction it is 7.92 μm. The 
corresponding control efforts for the non-rotation steady state 
condition are given in Fig. 5. 

Rotor mass (m) 61.9 kg 

Rotor transverse moment of inertia  4.79 kg m2 

Rotor polar moment of inertia  0.086 kg m2 

Force to current factor (kcx = kcy) 609 N/A 

HMB stiffness for horizontal motion (ksx) 28.05 N/mm 

HMB stiffness for vertical motion (ksy) 47.8 N/mm 

Nominal PM-AMB air-gap length  1 mm 

Nominal safety bearing clearance length 0.5 mm 

Coil resistance (R) 1.137    

Coil inductance (L) 0.136 H 

DC voltage supply 30 V 

Table 1 MODEL DATA FOR ROTOR-BEARING SYSTEM 

 
Fig. 4 Rotor horizontal and vertical displacements at 0 rpm 
 

 
Fig. 5 Rotor horizontal and vertical currents at 0 rpm 
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4.2 Step Response  

Fig. 6 shows the transient response for a 0.05 mm step 
applied to the input of the horizontal direction closed loop. 
The upper part of the figure illustrates the horizontal 
displacement while the corresponding control current is 
presented in the lower part. The step response for the vertical 
direction is presented in Fig. 7. The maximum horizontal 
displacement is 0.178 mm with 255% peak overshoot (PO) 
while the maximum vertical displacement is 0.166 mm with 
232% PO. The time required for the vertical direction to settle 
within ±5% of the equilibrium position is 0.1158 seconds. 
For horizontal direction, it takes 0.1162 seconds to reduce 
oscillations to amplitudes of 30% of the steady state value 
before the system settles after approximately 0.41 seconds. 

4.3 System Performance under Rotation 

Two cases are given to address the behavior of the system 
during rotation. Fig. 8 shows the vibration level of the shaft 
spinning at 1000 rpm. The P2P horizontal displacement is 
0.1325 mm while the P2P vertical vibration amplitude is 
0.1058 mm. The control currents for the horizontal and 
vertical axes for the 1000 rpm case are illustrated in Fig. 9. 

The second case is for the system rotating at 1800 rpm. The 
horizontal and vertical vibration amplitudes are shown in Fig. 
10. The P2P horizontal and vertical displacements are 0.0877 
mm and 0.113 mm respectively. The corresponding control 
efforts are shown in Fig. 11.  The maximum vibration 
amplitude for both cases is approximately 0.068 mm which 
represents 13.6% of the 0.5 mm safety bearing clearance. 

 
Fig. 6 Step response – horizontal direction 
 

 
Fig. 7 Step response – vertical direction 
 

 
Fig. 8 Rotor horizontal and vertical displacements at 1000 rpm 

 
Fig. 9 Rotor horizontal and vertical currents at 1000 rpm 
 

 
Fig. 10 Rotor horizontal and vertical displacements at 1800 rpm 
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4.4 Power Loss Evaluation 

The power consumption of the radial homopolar PM-AMB is 
evaluated for two operating conditions 1000 rpm, and 1800 
rpm by calculating the ohmic loss according to 
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where Ix and Iy are the root-mean-square (RMS) value of the 
control currents flowing in the electromagnetic coil of the 
horizontal and vertical directions respectively. Rx and Ry 
represents the total resistance for the horizontal and vertical 
coils respectively. The total ohmic losses for the radial 
bearing are 0.182 watts and 0.205 watts for the first and 
second cases respectively. 

5 Conclusion 

This paper presents the digital implementation of a 
decentralized double-loop controller for a radial PM-AMB of 
the homopolar configuration. The description of the employed 
system as well as a simplified mathematical model are given 
first. The employed controller is then discussed. PI controller 
is used for the inner loop while PID control is used for the 
outer loop. Tustin method is used to discretize the feedback 
controller. Experimental results are given to validate the 
satisfactory performance of the closed loop system under 
different operating conditions. The maximum vibration 
amplitude for the studied cases is approximately 0.068 mm 
which represents 13.6% only of the 0.5 mm safety bearing 
clearance. The total ohmic losses consumed by one radial 
PM-AMB is approximately no more than 0.21 watts at 1800 
RPM rotation speed.    

References 

[1] H. Bleuler, M. Cole, P. Keogh, R. Larsonneur, E. 
Maslen, Y. Okada, G. Schweitzer, A. Traxler, and E. H. 
Maslen, Magnetic Bearings: Theory, Design, and 
Application to Rotating Machinery. Berlin, Heidelberg: 
Springer Berlin Heidelberg, 2009. 

[2] M. N. Sahinkaya and A. E. Hartavi, “Variable Bias 

Current in Magnetic Bearings for Energy Optimization,” 
IEEE Trans. Magn., vol. 43, no. 3, pp. 1052–1060, Mar. 
2007. 

[3] E. H. Maslen, P. E. Allaire, M. D. Noh, and C. K. 
Sortore, “Magnetic bearing design for reduced power 
consumption,” J. Tribol., vol. 118, no. 4, pp. 839–846, 
1996. 

[4] P. Tsiotras and B. Wilson, “Zero- and low-bias control 
designs for active magnetic bearings,” IEEE Trans. 
Control Syst. Technol., vol. 11, no. 6, pp. 889–904, Nov. 
2003. 

[5] S. Ueno and M. N. Sahinkaya, “Adaptive Bias Current 
Control in Active Magnetic Bearings for Energy 
Optimization,” Volume 1: 23rd Biennial Conference on 
Mechanical Vibration and Noise, Parts A and B. 2011. 

[6] L. Bakay, M. Dubois, P. Viarouge, and J. Ruel, “Losses 
in hybrid and active magnetic bearings applied to Long 
Term Flywheel Energy Storage,” Power Electronics, 
Machines and Drives (PEMD 2010), 5th IET 
International Conference on. pp. 1–6, 2010. 

[7] S. Cheng and S. W. Day, “Design and control of hybrid 
magnetic bearings for maglev axial flow blood pump,” 
2010 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, 
pp. 187–192, Jul. 2010. 

[8] C. Sortore, P. Allaire, and E. Maslen, “Permanent 
magnet biased magnetic bearings, design, construction 
and testing,” Second Int. Symp. Magn. Bear., 1990. 

[9] Y. Fan, A. Lee, and F. Hsiao, “Design of a 
permanent/electromagnetic magnetic bearing-controlled 
rotor system,” J. Franklin Inst., vol. 334, no. 3, 1997. 

[10] S. Fukata and K. Yutani, “Dynamics of Permanent-
Magnet Biased Active Magnetic Bearings,” Kyushu 
Univ, Third Int. Symp. Magn. Suspens. Technol., pp. 
721–736, 1996. 

[11] A.-C. Lee, F.-Z. Hsiao, and D. Ko, “Analysis and 
Testing of Magnetic Bearing with Permanent Magnets 
for Bias,” JSME Int. journal. Ser. C, Dyn. Control. 
Robot. Des. Manuf., vol. 37, no. 4, pp. 774–782, 1994. 

[12] Y. Zhilichev, “Analysis of a magnetic bearing pair with 
a permanent magnet excitation,” Magn. IEEE Trans., 
vol. 36, no. 5, pp. 3690–3692, 2000. 

[13] M. S. Kandil, M. R. Dubois, J. P. Trovão, and  and L. S. 
Bakay, “A Sliding Mode Control of a Hybrid Magnetic 
Bearing for Wayside Flywheel Energy Storage 
Systems,” in Vehicle Power and Propulsion Conference 
(VPPC), 2015 IEEE, 2015. 

[14] A. Hughes, Electric Motors and Drives: Fundamentals, 
Types and Applications. Newnes, 2005. 

[15] M. Santina and A. Stubberud, “Discrete-Time 
Equivalents of Continuous-Time Systems,” in The 
Control Handbook, Second Edition, CRC Press, 2010, 
pp. 12–34. 

 

 
Fig. 11 Rotor horizontal and vertical currents at 1800 rpm 
 


