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Abstract- An analytical expression is developed for predicting emf 
waveforms resulting from permanent magnets (PM) in electrical 
machines. The expressions derived in the paper for the flux 
linkage are based on a volume integral over the PM volume, 
rather than the usual surface integral over the coil. The proposed 
method consists in applying a virtual current in the coil of the 
machine and calculating the magnetic field generated inside the 
PM volume. The emf waveform is obtained by derivating the flux 
linkage with respect to time. Analytical expressions of the emf are 
given for various PM shapes and Halbach magnetization patterns. 
Experimental verifications of the waveforms obtained are 
presented in the paper, demonstrating the validity of the 
expressions obtained theoretically. 

I. INTRODUCTION 

Faraday’s law implies that the motion of PMs in the vicinity 
of a coil creates an electromotive force (emf) across that coil. 
In a PM synchronous machine, the emf generated across each 
stator coil is an alternative, periodic function of time, with a 
certain waveform. The harmonic spectrum of the stator 
waveform will depend on the rotor PM shape and stator 
winding pattern. 

In many applications, predicting the frequency content of the 
emf and flux waveforms is useful. Such a prediction will 
enable the machine designer to: 

• determine the amplitude of the fundamental emf 
harmonic component; 

• determine the amount of iron losses in the machine 
related to the flux harmonics; 

• optimize the amount of PM material  for the desired 
voltage output. 

In past literature, the PM configurations studied were usually 
simple (e.g. rectangular with radial or parallel magnetization of 
the PMs). The analytical prediction of the no-load flux density 
is usually approached by using a scalar or vector potential 
formulation of the fields in the airgap and solving Laplace’s or 
Poisson’s equation with boundary conditions adapted to the 
geometry analyzed [6][7]. Even with a simple PM structure, 
the analytical solutions will give long analytical expressions of 
BPM in the air gap. For more sophisticated PM geometries (see 
fig. 1), the complexity of the boundary conditions will give rise 
to significant mathematical difficulties when solving Poisson’s 
or Laplace’s equation. In this paper, a different mathematical 
approach is developed. Analytical expressions will be derived 
for the emf waveform, which include the time harmonics  
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Fig. 1. PM configurations studied in the paper: pyramidal; T-shape; Halbach.  
 
related to the PM geometry, based on the concept of 
volumetric flux contribution of PM elements, developed by the 
author in [1].  
 

II. ALTERNATE EXPRESSIONS FOR FLUX LINKAGE 

In this section, a new expression for the no-load flux linkage 
λPM generated by the permanent magnets is presented. Let us 
assume a fixed stator winding and movable permanent magnets 
with the arbitrary shapes shown in fig. 2. In the system of fig. 
2, we consider a coil made of several turns, where a current is 
allowed to flow.  
We write the product iλ “seen” by that coil. 
 

∫∫∫ ⋅=
Vuniverse

dvHBiλ           (1) 

 
where λ is the total flux linkage, i.e. created by the PM and the 
coil. As discussed in [4], iλ is the sum of the magnetic energy 
and magnetic coenergy “seen” by the coil.  



Proceedings of the 2008 International Conference on Electrical Machines Paper ID 910  

978-1-4244-1736-0/08/$25.00 ©2008 IEEE  2 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
Fig. 2 Generalized PM machine, with arbitrary iron, PM, and coil shapes. 
 
The three variables λ, H and B of (1) have a component 
created by the current in the coil and a component created by 
the PMs. In this work, the following assumptions are made: 

- PMs have rigid magnetization, that is constant remanent 
flux density Br and recoil permeability μrecoil= μ0. 

- Steel parts are ideal (no saturation and infinite 
permeability); 

- Constant magnetic vector potential throughout the coil 
conductors cross-section, that is, assumption of 
filamentary conductors. 

The assumptions of linear PM (assumption 1) and ideal iron 
(assumption 2) allow us to subdivide λ, H and B into λa, Ha, 
Ba (component created by the current flowing in the coil, when 
Br = 0 T), and λPM, HPM and BPM (component created by the 
PM alone, when i  = 0).  The components Ha, Ba, HPM and BPM 
are shown in fig. 2. We rewrite (1): 

 

dvHHBBi PMaPMa
V

PMa

universe

)()()( +⋅+=+ ∫∫∫λλ     (2) 

 
As demonstrated in [5], the integral taken over the universe of 
the dot product of two vectors is zero, if the curl of the first 
vector is zero, and the divergence of the second vector is also 
zero. Since curl(HPM) = 0 and div(BPM) = 0, (2) becomes: 
 

∫∫∫ ⋅=
universeV

aPMPM dvHBiλ         (3) 

 
With the use of the above stated assumptions, we can easily 
show (see [1]) that the product of current i and no-load flux 
linkage λPM is equal to: 
 

∫∫∫ ⋅=
PMV

raPM dvBHiλ     

or 

∫∫∫ ⋅=
PMV

r
a

PM dvB
i

Hλ                (4) 

which reveals that the no-load flux linkage λPM  can be viewed 
as a volume integral over the volume of all PM material in the 
machine. At this point, the reader may be uncomfortable with 
the idea that the no-load flux linkage λPM can be expressed 
with (4). However, the demonstration of this equivalence was 
established in [1] in more detail and will not be entirely 
repeated here. Experimental results presented in section IV of 
the present paper will confirm the validity of (4). 
 As a consequence of (4), we can determine the no-
load flux linkage λPM by injecting a current i in the stator coil, 
and by calculating the magnetic field Ha created by the stator 
winding and entering the volume of the PM. Any modification 
in the magnet geometry will not change the field Ha, but will 
modify the boundary of the volume integral. What was a 
highly difficult mathematical problem with Laplace’s or 
Poisson’s equation can be greatly simplified with eq. (4), 
provided that the stator winding is a regular geometry. 
 

III. NO-LOAD FLUX LINKAGE IN A SLOTLESS PM 
MACHINE 

In this section, an analytical expression for the emf is derived, 
based on (4), for the case of a PM machine with a slotless 
stator with an infinitely thin winding (fig. 3). In the derivation 
of λPM, the first step consists in expressing the magnetic field 
intensity Ha created by the coil, as prescribed by (4). In 
cylindrical coordinates, the stator-created field is given in [3] 
for an infinitely thin winding: 
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Fig. 3.  The PMs in the airgap space. Regular PM shape. 
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where Har and Haα are the radial and tangential components of 
the stator-created magnetic field intensity in cylindrical 
coordinates and p is the number of pole pairs in the machine. 
Nk is the coil winding factor for each kth harmonic, rr and rs are 
respectively the rotor and stator radius, and hm is the magnet 
thickness. 

For one stator coil, the integral volume must extend from 
radius r = rr to radius r = rr + hm, from mechanical angle α = -
αp/2 to α = +αp/2, and from axial length l = 0 to l = ls. Here we 
consider that PMs may have the radial and tangential 
polarization components Brr and Brα. For a rectangular PM 
shape, the tangential component Brα   is zero and the PMs are 
oriented radially. But with a Halbach array, the component 
Brα  will be considered due to the PMs oriented tangentially.  

As the cylindrical coordinate system is orthogonal, we may 
write the dot product of (4) in the following form. 
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The total emf is obtained by inserting (5) and (6) into (7) and 
derivating with respect to θ. We obtain: 
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Eq. (8) assumes that the stator emf is the sum of all the coils 
individual induced voltages. Inserting (7) into (8) and solving: 
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Brrdn and Brαqn are respectively the space harmonic content of 
the radial PM in the d axis and tangential PM in the q axis. γ is 
the rotational speed in rpm. The full derivation of (9) is 
presented in [2]. 

The analysis can be extended to less conventional PM 
shapes, consisting of 2 layers of magnets of different widths. In 
(9), the boundaries of integration were rr and rr + hm. For the 
case of segmented magnets with variable widths for each 
segment, the integral of (7) will be expressed as a sum of 2 
volume integrals, that is, one volume integral for each magnet 
layer. Only the boundaries need to be changed.  

Fig. 4 shows how the decomposition is made. For each 
magnet layer, a flux linkage (λ1 for hm1 and λ2 for hm2) and emf 

are obtained. The total flux linkage is computed by summing 
λ1 and λ2. In our case, the volume has been separated in two 
regions, but if necessary, it could be done for several regions 
and the same principle could be used.  
Layer 1 goes from r = rr to r = rr + hm1 and part 2 goes from r 
= rr + hm1 to r = rr + hm where hm1 is the height of the first 
segment. 

21 λλλ +=PM        (10) 
 
From eq. (7), we write the flux linkage in each layer. 
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The space harmonics Brrdn and Brαqn are identified with indices 
1 and 2, because the radial and tangential space harmonics of 
layer 1 may be different from that of layer 2. Eq. (11) and (12) 
are solved as follows: 
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Fig 4. PM integration volume 

 
The emf is obtained by derivating (13) and (14) with respect to 
θ. We obtain: 
 

e (θ) = e1 (θ) + e2 (θ)     (15) 
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IV. EXPERIMENTAL RESULTS 

In this section, four magnet geometries are illustrated: 
• Rectangular – 1 layer – radial magnetization 
• Pyramidal – 2 layers – radial magnetization 
• T-shape – 2 layers – radial magnetization 
• Halbach – 2 layers – radial and tangential 

magnetizations 
For each configuration, the space harmonics of the remanent 
flux densities Brrdn and Brαqn are illustrated, with the emf 
waveform calculated with eq. (15), (16) and (17). For each 
configuration, a rotor and stator were built and the emf 
waveform was measured with an oscilloscope, across 1 coil 
made of 5 turns, as shown in fig. 5.  

The parameters of each configuration are given in Table І.  

 
 

 
 

Fig. 5. Experimental machine.  
 

TABLE І : GEOMETRICAL PARAMETERS OF THE 4 ROTOR CONFIGURATIONS  

Parameters Symbol Rectangular Pyramidal "T" Halbach Units 
a 

Pole 
number 2p 12 12 12 12 — 

Winding - Full-pitch Full-pitch Full-pitch Full-pitch  

Number of 
turns per 
coil 

N / 2p 5 5 5 5 — 

Rotor 
radius rr 0.061 0.060 0.061 0.061 m 

Stator 
radius rs 0.075 0.075 0.075 0.075 m 

Airgap 
thickness g 5 6 5 8.2 (radial)  

1.2 (tangent) mm 

Radial 
thickness hm 9 9 9 6 (radial)  

13 (tangent) mm 

Magnets 
Electrical 
arc 

− 73 132 (base) 
73 (top) 

73 (base)  
90 (top) 

90 (radial)    
13 (tangent) ° 

Coil width αk 2.3 2.3 2.3 2.3 ° 
Pole-pitch αp 30 30 30 30 ° 
Magnet 
remanence Br 1.15 1.15 1.15 1.15 T 

Coil 
length ls 20 20 20 20 mm 

Coil width — 39.3 39.3 39.3 39.3 mm 
Rotational 
speed γ 1462 733 1355 1345 rpm
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The experimental emf waveforms are illustrated in fig. 6c), 7c), 
8c), 9c) and compared with the theoretical waveforms on the 
same figure. For a rectangular magnet shape with radial 
magnetization, fig. 6 shows the magnet configuration, the 
spectral content of the remanent flux density in the radial 
direction Brrdn and the experimental and theoretical emf 
waveforms. The results presented in fig. 6 indicate good 
agreement between the theoretical waveform obtained with eq. 
(9) and the experimental waveform. 

In fig. 7 and 8, two-layer magnet configurations are 
considered, with a pyramidal stack of magnets and a T 
configuration.  The results presented in fig. 7 and 8 indicate a 
good agreement between the theoretical waveforms obtained 
with eq. (13), (14), (15) and the experimental waveforms. 
 

 
a) 
 
 
 
 

 
 
 
 
 
 
 
 

b) 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

c) 
Fig. 6. Results with the rectangular shape. a) magnet configuration, b) space 
harmonics of the PM magnetization, c) experimental and theoretical voltage 
waveforms at no-load across one coil of 5 turns.  
 

 
a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
b) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

c) 
 

Fig. 7. Results with the pyramidal shape. a) magnet configuration, b) space 
harmonics of the PM magnetization, c) experimental and theoretical voltage 
waveforms at no-load across one coil of 5 turns. 

 
In fig. 9, a new characteristic is present that is not found on 

the other figures: the tangential component. In the Halbach 
array of fig. 9, both components of Br, radial and tangential are 
presented. On the upper layer of the PM arrangement of fig. 
9a), only tangential PMs are present. For that upper magnet 
layer, the PM space harmonic content considered is the 
tangential harmonic content Brαn only, and the radial harmonic 
content is zero for all Brrn. The results presented in fig. 9 also 
indicate good agreement between the theoretical waveform 
obtained with eq. (13), (14), (15) and the experimental 
waveform. 
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a) 
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c) 
 
Fig. 9. Results with the “T” shape. a) magnet configuration, b) space 
harmonics of the PM magnetization, c) experimental and theoretical voltage 
waveforms at no-load across one coil of 5 turns. 
 

V. CONCLUSION 

The paper has presented an innovative method for deriving 
the no-load flux linkage and emf in a permanent magnet 
machine, by performing a volume integral on the magnets. The 
method was applied to a cylindrical PM machine with surface 
magnets, with various magnet configurations. Analytical 
expressions were obtained, which predict the emf and no-load 
flux waveforms very accurately. The waveforms were 
validated experimentally on four configurations of PMs on the 
rotor: a rectangular magnet configuration, a pyramidal 
configuration, a T configuration and a two-layer Halbach array. 
In each case, the waveform obtained experimentally was 
closely matched by the theoretical waveform. 
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a) 
 
 
 
 
 
 
 
 
 
 

 
b) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
c) 

Fig. 10. Results with the Halbach array. a) magnet configuration, b) space 
harmonics of the PM magnetization, c) experimental and theoretical voltage 
waveforms at no-load across one coil of 5 turns. 
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