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Abstract— Rotor mass imbalance is a common problem 
to rotating machines due to the unavoidable imperfections 
in manufacturing. These imbalance forces can be viewed 
as harmonic disturbances which lead to a periodic rotor 
runout during rotation. Furthermore, the runout length 
increases with the rotational speed squared. Moreover, for 
variable rotational speed applications, these harmonic 
disturbances are also time-varying.  Active magnetic 
bearings (AMB) provide a mean to actively attenuate these 
disturbances. Although, various imbalance compensation 
schemes have been proposed in literature to handle this 
problem, they are often more suitable for constant 
rotational speed applications where disturbances can be 
handled at a predetermined rotational speed. This study 
proposes the application of second-order sliding mode 
control (2-SMC) to regulate AMB systems throughout a 
wide operating speed range. The proposed controllers are 
composed of two components. The first component is a 
linear controller for the sake of stabilizing the inherently 
unstable system, while the second component is a 2-SMC 
to handle the model uncertainties of the system as well as 
the exogenous harmonic disturbances. Simulation and 
experimental results are provided to demonstrate the 
effectiveness and superiority of the proposed techniques 
compared to the conventional linear controller. 

 
Index Terms— Active magnetic bearings (AMB), second-

order sliding-mode control (2-SMC), time-varying 
harmonic disturbances, vibration control. 
 

I. INTRODUCTION 

 
otating machines suffer from a common problem known 

as rotor mass imbalance which leads to vibrations in the rotor 
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in the form of harmonic disturbances. As a result, centrifugal 
forces or imbalance forces are generated when the rotor rotates 
about its geometric axis and eventually yield the unpleasant 
rotor vibrations phenomenon. Unlike mechanical bearings, 
active magnetic bearings (AMB) have the capability of 
regulating rotor dynamics and achieving active vibration 
control via generating proper electromagnetic forces. 
Furthermore, the tremendous advantages of AMB include 
being lubricant-free, mechanically wear-free, and providing a 
frictionless support to rotating machines. Moreover, they have 
a longer life time, lower need to maintenance, and lower 
losses when compared to the conventional mechanical 
bearings. Over the past years, they have been applied in many 
industrial applications such as high-speed drive systems, 
energy storage flywheels, turbo-machinery [1]. 

In principle, the existing control schemes can be categorized 
into two groups, robust control and imbalance compensation 
schemes.  For robust control approach, decentralized robust 
controllers [2] and more efficient ( but more complicated as 
well) centralized control schemes [3] have been proposed in 
the literature. Gain-scheduled robust controllers have been 
investigated for variable rotational speed applications [4]. 
Recently, linear parameter varying (LPV) control approach 
has been proposed to eliminate the need for gain-scheduling 
which could lack to stability and/or performance guarantees 
[5]. However, this technique eventually yields extremely high 
order controllers. Subsequently, their real-time 
implementation is nontrivial and requires a very powerful 
control platform. For the imbalance compensation schemes, 
various approaches have been proposed such as adaptive 
vibration control (AVC) [6], and notch filters [7]. Although 
extending notch filter based schemes to a wide range of 
rotation is possible through gain scheduling the parameters of 
the notch filters, the successful implementation depends very 
much on the accuracy of speed measurement. For AVC, 
rotation throughout a wide speed range is also feasible. 
However, besides complex nonlinear adaptation mechanisms 
are often used, the convergence could not be guaranteed in all 
cases [8]. Moreover, the precise measurement of the rotation 
speed is necessary for the successful practical implementation.  

Over the past years, sliding mode control (SMC) has gained 
a significant interest because of the claimed invariance to 
matched model uncertainties and external disturbances. It is 
the discontinuous control action that gives the interesting 
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features to this controller. Nevertheless, the practical 
implementation of an ideal SMC is not feasible because of the 
so-called chattering problem [9]–[11]. This drawback is non-
acceptable in many applications such as mechanical systems 
due to the potential wear and tear of actuator and the possible 
loss of system stability. The commonly used solution in the 
conventional sliding mode control (CSMC) literature to handle 
chattering problem is the boundary layer approach [9]. This 
approach would effectively solve the problem but on the price 
of losing the complete invariance property. As a result, a 
compromise between the performance and the allowable 
chattering level is inevitable [11]. The principles of CSMC 
have been investigated and experimentally tested for 
compensating harmonic disturbances in AMB, e.g. [12], [13].  
Some efforts have also been made to enhance the performance 
of these CSMC, such as incorporating a disturbance observer 
[14], or via adaptive control and neural networks [15]. 
However, the performance of these control techniques was 
validated at a constant rotational speed only. Few efforts have 
been made to investigate the performance of SMC principles 
to confront the time-varying harmonic disturbances in the case 
of a wide speed range. In [16], a gain-scheduled sliding 
manifold was proposed. However, it was observed that the 
performance degraded at the critical speeds. In [17], the 
sliding manifold was designed using μ-synthesis technique. 
Although it was claimed that the performance was 
satisfactory, the performance of that algorithm was not 
compared against any other control technique.        

As an alternative approach, higher order sliding modes 
(HOSM) have been developed for handling the chattering 
problem while maintaining the main advantages of the CSMC 
with respect to robustness, order reduction, simplicity and ease 
of implementation [18]. Furthermore, the practical 
implementation of HOSM results in a higher accuracy 
compared to the CSMC in the presence of switching delays 
and measurement noise [19]. The competence of HOSM has 
been demonstrated in different applications [20]–[25]. 
Recently, this promising technique has been considered for 
AMB application. In [26], a decentralized control scheme 
based on a modified super twisting 2-SMC algorithm was 
proposed. In [27], a new multivariable continuous 2-SMC 
algorithm was designed. A centralized scheme was proposed 
for controlling a five degrees of freedom AMB system (one 
thrust bearing and two radial bearings). However, the 
performance of both the decentralized scheme in [26] and the 
centralized scheme in [27] were proposed for constant speed 
AMB applications. Furthermore, their performances were 
demonstrated via simulation results only with no comparison 
against any other control scheme. In literature, some 2-SMC 
contributions have also been reported for single degree of 
freedom AMB systems (e.g. thrust AMB and MAGLEV 
systems) [28]–[30]. However, the control problem in these 
systems is simple compared to the radial AMB. Furthermore, 
they do not suffer from any harmonic disturbances since no 
rotation is involved. 

This paper proposes the application of two popular second-
order sliding mode control (2-SMC) techniques, namely the 

twisting and the suboptimal algorithms, to regulate the 
operation of AMB systems in a wide operating speed range. 
The proposed control schemes are composed of two parts. The 
first one is a linear proportional-integral-derivative controller 
(PID) for the sake of stabilizing the inherently unstable 
system, while the second part is the 2-SMC which is devoted 
to handle the model uncertainties of the system as well as the 
exogenous time-varying harmonic disturbances. To the best of 
our knowledge, this is the first experimental study to report the 
application of 2-SMC techniques to handle time-varying 
harmonic disturbances in multi-axis AMB. The novelty and 
contributions of this study compared to the existing methods 
can be summarized as follows: (i) The concept of proposing 2-
SMC algorithms as an add-on to enhance the disturbance 
attenuation performance of the PID control (the widely-
adopted controller for industrial applications). (ii) Addressing 
the application of both twisting and suboptimal 2-SMC 
algorithms for variable rotational speed AMB applications. 
(iii) The experimental implementation of these algorithms on a 
practical control platform. (iv) Conducting a fair comparative 
analysis between a well-tuned PID controller and the same one 
but equipped with the proposed 2-SMC add-ons. (v) Deriving 
a condition that shows the bandwidth limitation of 2-SMC 
approach with respect to the effective handling of harmonic 
disturbances, see Appendix II. 

This paper is organized as follows. In Section II, the 
mathematical model for rotor-AMB with rotor mass imbalance 
is presented. Sections III presents the second-order sliding 
mode control principles. Section IV presents the proposed 
control schemes. Section V is devoted to presenting simulation 
results and experimental validation. Finally, Section VI 
concludes this paper. 

II. MATHEMATICAL MODEL 

A. Rotor-AMB Model 

The mechanical diagram for the rotor-bearing system is 
illustrated in Fig. 1. The rotor is assumed to be rigid. 
Following Newton–Euler equations, the dynamic behavior for 
this system about the center of gravity (COG) can be 
described as follows [1]: 
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where xs and ys represent the displacement of the rotor with 
respect to the COG while �x and �y denote the angular 
displacement of the rotor around the x and y axes respectively; 
m denotes the rotor mass, Jr and Jz are the rotor transverse and 
polar moments of inertia respectively; ω is the rotational speed 
of the rotor; Fx1, Fy1, Fx2, and Fy2, are the resultant horizontal 
and vertical forces at the first and second radial bearings B1, B2 
respectively; fdx and fdy are the external disturbances acting on 
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the rotor; and lengths l1 and l2 are the distance between the 
first and second bearings and the COG respectively. 

The electromagnetic forces in (1) are typically nonlinear 
functions in terms of coil currents and rotor displacements. 
Taylor expansion is usually applied for achieving linearization 
around the geometric center of the bearing. For instance, let us 
consider the electromagnetic forces of bearing B1, the 
linearized bearing forces, Fx1 and Fy1 acting along the x- axis 
and y- axis directions respectively can be written as follows: 

 
x sx ix x

y y sy iy y

F k x k i

F F k y k i

  

  

1 1

1 1

1

1 10
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where yF 10 represents the constant force component generated 

by the biasing current yI 1  compensate the static load acting on 

bearing B1 which usually equals to half of the rotor weight, x1 
and y1 represent the horizontal and vertical deviations 
respectively, ix1 and iy1 are the control currents for horizontal 
and vertical axes respectively, while the parameters ksx, ksy, kix, 
and kiy are defined in Table II, see Appendix I. The forces 
generated at bearing B2 can be formulated in a similar manner 
to (2).  

B. External Disturbances 

Rotor mass imbalance forces are the major source for 
external harmonic disturbances which can be represented by 
two perpendicular components fdx and fdy acting on the 
horizontal and vertical axes respectively. The imbalance 
forces can be modeled as [8]: 
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where ε denotes the mass eccentricity, and φ is the initial 
phase of the mass center. 

The presence of these imbalance forces leads to a periodic 
runout during the rotation of the rotor which increases with the 
rotational speed squared. Unless xo = 0 and/or yo = 0, then 
there will also exist an electromagnetic imbalance in AMB 
which means that at this moment the electromagnetic center 
does not coincide with the geometric center. Fortunately, 
unlike conventional bearings, AMB provide a mean to handle 
this problem through proper control schemes. 

III. SECOND-ORDER SLIDING MODE 

HOSM have emerged as a promising approach for handling 
the chattering problem while preserving the main advantages 
of the CSMC [18], [31], [32]. The high frequency oscillations 
could be significantly reduced since the actual discontinuous 
control action is acting on the higher time derivative of the 
sliding variable instead of the first time derivative as in 
CSMC [11], [33], [34]. It is considered an extension to the 
original sliding mode theory. In this context, CSMC are often 
referred to as first order sliding mode control (1-SMC). This 
section presents a brief review to the concepts of two popular 
2-SMC, namely, the twisting and the suboptimal algorithms. 

A. Problem Formulation 

Consider the following nonlinear uncertain system: 

    , ,x f t x g t x u    (4) 

where n
x    is the state vector, t is the time, u    is the 

control input, and  .f ,  .g  are some smooth and uncertain 

vector functions.  
Assume that a sliding variable σ is defined to fulfill the 

required control specifications as follows: 

  ,t x    (5) 

and is deigned such that it has a relative degree r with respect 
to the control variable u. For 2-SMC, consider σ has a relative 
degree r = 2, and the second total time derivative of (5) can be 
formulated as: 

    , ,t x t x u       (6) 

where  .  ,  .  are uncertain and smooth functions and 

only their bounds 
0
 , 

m
 , 

M
 , and   are known and fulfill 

the following inequalities [11]: 

 , ,
0

0
m M
            (7) 

The control objective in 1-SMC is to drive the sliding variable 
σ to zero in finite time, while for 2-SMC, it is required to drive 
both the sliding variable σ and it time derivative   to zero in 
finite time. This is done by means of a discontinuous control 
action which acts on the second derivative of the sliding 
variable   [33]. In the following subsections, two 2-SMC 
algorithms that fulfill this control objective are presented. 

B. Twisting Algorithm 

Historically, the twisting algorithm is considered the first 
developed technique that falls under the category of 2-SMC 
algorithms. This algorithm depends on the switching between 
two different control gains such that the state trajectory is 
steered in a spiral (twisting) manner to converge in finite time 
to the origin, see Fig. 2 (a). This control algorithm can be 
defined as follows [31]: 
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Fig. 1. Mechanical diagram for the rotor-bearing system. 
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Appropriate values for ρt and ρT have to be chosen in order to 
guarantee that the trajectory twisting around the origin of the 
 plane in finite time. The corresponding sufficient 
conditions to achieve this task are given as follows [31]: 
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C. Suboptimal Algorithm 

The bang-bang controller is a classical time optimal control 
law characterized by switching between two extreme bounds. 
It is one of many options proposed in the literature for 
stabilizing uncertain nonlinear second systems in finite time. 
However, the application of this optimal controller requires a 
complete information about the states of the system. The 
problem of the finite time stabilization of uncertain second 
order nonlinear systems with incomplete state measurements 
was addressed in [35] in which the suboptimal algorithm, 
inspired by the classical time optimal bang-bang control of a 
double integrator, was derived using a sub-time-optimal 
feedback to fulfill this objective. Unlike the twisting algorithm 
which makes the trajectories converges non-monotonically in 

finite time to the origin of the   phase plane, this algorithm 
yields a monotonic convergence. Moreover, the driven 
trajectories show twisting and jumping behaviors while 
converging to the origin, see Fig. 2 (b). This algorithm can be 
defined as follows [33], [35]: 
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where          .
M M

t t t t      0 5 , ηsub and ρsub 

are positive control variables, 
M
  is the value of  recorded 

when   was detected equal to zero at the last time. 
M
  is 

initialized to zero and then updated by inspecting the last 
recorded value of  . The practical implementation of this 

algorithm requires the online estimation of 
M
 which can be 

simply realized by checking the sign change of the difference 

  between the successive measurements of  [11]. Thus, 

M
 can be estimated as: 
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where 
iMt  are the time instants at which   was detected equal 

to zero. To guarantee a finite time convergence, the control 
parameters can be tuned according to the following 
inequalities [33]: 
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The above constraints represent the sufficient conditions.  

IV. CONTROL DESIGN 

A. Control Objective 

For the sake of simplifying the control design process, a 
simple second-order model for one controlled axis in terms of 

the position tracking error 
r

q q q  can be formulated 

where
r

q  represents the position reference while q  is the 

measured position signal (e.g. q = y1 for the vertical axis at 
bearing B1). It can be shown that this simplified model is 
described by: 
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where 
1

q q   and 
2

q q   , u is the control input, a and b are 

the system parameters, and d(t) represents the lumped external 
disturbances to the system which is assumed to be unknown 
but bounded. The state space model (13) can be re-written in a 
compact form as: 
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Again, the control objective is the stabilization and 
regulation of the rotor around the equilibrium point in the 
presence of external harmonic disturbances. Since the external 
disturbances are time varying, it could be infeasible to achieve 
a complete disturbance rejection using a feedback controller 
[36]. Instead, the control objective is to achieve a disturbance 

(a) (b)

 

Fig. 2. Phase trajectory for 2-SMC: (a) twisting algorithm, (b) 
suboptimal algorithm (for a double integrator system). 
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attenuation throughout a wide range of rotational speeds. 

The proposed control schemes based on 2-SMC concepts 
are composed of two components. The first component is a 
linear controller while the second component exploits the 2-
SMC concepts which can be considered as an add-on to the 
stabilizing linear controller. A PID is selected to represent the 
linear controller and this control component is common to all 
the proposed schemes. 

B. Twisting 2-SMC 

Consider the sliding variable is defined as follows 

 
t

q q 
2 1
     (15) 

where λt is a positive constant. The proposed controller (PID-
TWIST) can be defined as follows: 
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It should be noted that the system (13) has a relative degree r 
= 1 with respect to the chosen output function (15). 
Furthermore, the proposed twisting controller is “hidden” 
under an integral action to alleviate the chattering effect 
introduced by the discontinuous action. Therefore, the 
discontinuous component acts on the second derivative of the 
sliding variable instead of the first derivative as in the 1-SMC. 
This can be illustrated by deriving the first and second 
derivatives of the sliding variable (15) respectively as follows: 
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where ul is the linear controller comprising the PID control 
action of (16).  

C. Suboptimal 2-SMC 

From (11), it is noticed that the successful implementation 
of the suboptimal algorithm depends on the accuracy of 

estimating 
M
 . Thus, the performance of this algorithm could 

be affected by the presence of measurement noise if a simple 
numerical differentiator is employed. As a mitigation to this 
problem, we propose replacing the numerical differentiator by 

a high gain observer (HGO) for the sake of estimating 
M
  and 

 from  . Furthermore, the HGO is also used as a 
replacement to the derivative action component in the PID 
controller. Besides the desire to reduce the effect of 
measurement noise, the HGO is selected because of its 
simplicity. In this section, we present the development of two 
control schemes based on the concepts of the suboptimal 2-
SMC. The first one employs the simple numerical 
differentiator while the second one relies on the HGO. 

The design process of both the suboptimal-based controllers 
also comprises two steps. Consider first, the sliding variable 
chosen as follows1: 

 q
1
   (19) 

It is noticed that the system (13) has a relative degree r = 2 
with respect to the chosen output function (19). The two 
controllers are described below. 

1) The First Control Scheme 
The first suboptimal-based controller (PID-SUB1) can be 

defined as follows: 
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The discontinuous component acts directly on the second 
derivative of the sliding variable instead of the first derivative 
as in the 1-SMC. This can be illustrated by deriving the 
second derivative of the sliding variable as follows: 
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2) The Second Control Scheme 
If the measured output signal is 1q  and it is required to 

estimate its time-derivative 2q , then the HGO can be defined 

as [36]: 

 
 

 

* * *

* *

1
1 2 1 1

2
2 1 1

q q q q

q q q













  

 

  (22) 

where , and1 2    are positive constants with 1 , and 
* *and1 2q q  represent the estimated signals of q1 and q2 

respectively. Incorporating the HGO with the suboptimal 
algorithm, the second proposed suboptimal controller (PID-
SUB2) controller can be formulated as: 

 * * *
t

PID SUB p d i subu k q k q k q d    2 1 2 1
0

       (23) 

 
1 A suboptimal controller based on a PD-like sliding variable was also 

considered but the experimental results of this controller was inferior 
compared to the linear controller. Therefore, we decided to remove this part 
for brevity and present the version that yields a good performance. 
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where 
* *

r
q q q 
1 1
  is the tracking error while 

*
q
2
  is its time 

derivative.  

D. Remark on the Stability of 2-SMC Algorithms 

It is common to use the Lyapunov approach to address the 
stability, robustness and convergence rate to the equilibrium 
point for 1-SMC. However, a similar treatment is not usually 
applicable to HOSM. Instead, either geometric-based 
techniques such as majorant curves or homogeneity are often 

employed to proof the convergence to the origin of the   
phase plane. Detailed stability proofs for the 2-SMC 
algorithms presented in this paper can be found in [11]. 

V. SIMULATION AND EXPERIMENTAL RESULTS 

A. AMB Setup 

Fig. 3 shows a photo of the AMB test rig. The experimental 
setup is composed of a shaft for which the driven terminal is 
supported by a mechanical ball bearing while the non-driven 
terminal is supported by a radial permanent magnet-biased 
active magnetic bearing (PM-AMB). The magnetic bearing 
has an air gap of 1.0 mm and is protected by a safety bearing 
with a 0.5 mm clearance. An induction motor is used for 
rotating the shaft up to 3000 revolution-per-minute (RPM). 
Two position sensors of inductive type are used for position 
control, and two current sensors are also required for closing 
the current control loop. Two single phase inverter circuits 
(one for each axis) are used to amplify the control current. 
Digital PI controllers are implemented on the digital signal 
processing (DSP) board for regulating the currents in the 
power amplifier loops.  

B. Implementation Issues 

Since the proposed control schemes are explicitly composed 
of two control actions, the implementation and tuning process 
can be split into two phases. The first phase considers the 
realization of the PID controller to stabilize the inherently 
unstable plant.  There exist many techniques proposed in the 
literature for tuning PID control in general [37] and for AMB 
systems in particular, e.g. [1], [38]. In this work, the PID gains 
were initially selected via computer-aided simulation and then 
finely tuned after extensive experimentations. The second 
phase of tuning process is devoted to the 2-SMC algorithms. 
As illustrated in Section III, the twisting and the suboptimal 
algorithms can be tuned according to (9) and (12) respectively. 
However, it should be indicated that these conditions are only 
sufficient but not necessary. Furthermore, they are very 
conservative since they are based on the worst-case estimate 
of the controlled plant bounds and applying them could result 
in very large control signals. Therefore, it is usually advised to 
tune 2-SMC algorithms heuristically via numerical 
simulations  [11]. 

To facilitate the computer-aided tuning process for the 
proposed 2-SMC algorithms, we present some guidelines in 
the following sentences. For the twisting algorithm, there are 
three parameters to be tuned. At first, a set of values for tuning 
parameter λt is arbitrarily selected.  Then λt is initially adjusted 
to the minimal element. The other two parameters ρT and ρt are 
then interactively tuned to attain as high disturbance 

attenuation as possible while satisfying the condition 
T t
  . 

Since the objective is to attenuate harmonic disturbances in a 
wide speed range, the controller is tuned and tested against the 
worst-case condition. For our system, the worst-case in terms 
of vibration levels corresponds to the critical speed 
encountered at 2600 RPM when PID control only is applied to 
the system. The above procedure is repeated for each member 
of λt set values. Finally, the group that achieves the best 
disturbance attenuation throughout the entire speed range is 
chosen as design setting for the proposed algorithm. A similar 
approach can be adopted for selecting the parameters of the 
suboptimal algorithm.  For tuning the HGO, [36] can be 
consulted. Once, the proposed schemes are tuned with 
numerical simulations, they are then finely tuned with 
experimentation. The final settings are provided in Table III, 
see Appendix I. It should be emphasized that the same PID 
controller is common to all the control schemes. 

The configuration of the proposed schemes is shown in Fig. 
4. The control algorithms were realized using the Spectrum 
Digital eZdsp F2812 board. The board employs 
TMS320F2812 DSP which is a 32-bit DSP with fixed-point 
arithmetic and includes six dual pulse width modulation 
(PWM) channels and 16 12-bit analog-to-digital converters 
(ADCs). A sampling rate of 10 kHz was used for executing 
the control algorithms. 

C. Simulation Results  

In this subsection, a comparative analysis via numerical 
simulation is carried out between a well-tuned PID controller 
and the proposed 2-SMC schemes to demonstrate the 
effectiveness and the superiority of the proposed techniques in 
handling time-varying harmonic disturbances. To ensure a fair 
comparison, the proposed schemes employs the same PID 
controller but equipped with the 2-SMC components as add-
ons. To fulfill this objective, the rotor-AMB model (1) 
described in Section II was implemented in the environment of 
MATLAB/Simulink. Furthermore, the effect of the rotor mass 
imbalance forces acting throughout a wide speed range are 
represented by (3). For the sake of simplicity, we neglected 
the electromagnetic imbalance (i.e. xo = 0 and yo = 0) and also 
assumed that the harmonic disturbances have a constant 
amplitude (ε m = 30 N) while their frequency initially starts at 

FbyFby

1

2

3
4 5 6 7

 

Fig. 3. radial magnetic bearing test rig: (1) safety bearing, (2) 
position sensor, (3) PM-AMB, (4) shaft, (5) ball bearing, (6) flexible 
coupling, (7) induction motor. 
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0.1 Hz and linearly increases up to 50 Hz in 10 s. Moreover, a 
white-noise is injected to the feedback loop to emulate the 
behavior of a noisy measurement system.  

Fig. 5 shows a comparative simulation results of the 
proposed controllers against PID controller for the vertical 
axis in terms of attenuating the time-varying harmonic 
disturbance. For the PID case, one can notice that the 
harmonic disturbances make the vertical position deviates 
from the origin. Furthermore, this deviation increases with the 
rotational speed until it reaches a peak value around 2000 
RPM. This amplification in the position deviation is due to the 
coincidence between the operating speed and a natural 
frequency of the PID-controlled system.  It is also remarkable 
that the peak to peak displacement reduces from 92.38 μm in 
the PID case to 70.49 μm, 52.55 μm, and 41.39 μm for the 
PID-SUB1, PID-SUB2, and PID-TWIST cases respectively. 
In other words, adopting the proposed PID-SUB1, PID-SUB2, 
and PID-TWIST compensation techniques respectively yields 
23.7%, 43.12%, and 55.20% reduction in the peak to peak 
rotor displacements.  

From these results, one can conclude that the twisting 
algorithm could achieve better disturbance attenuation to 
harmonic disturbances compared to the suboptimal algorithm. 
Furthermore, replacing the numerical differentiator with the 
HGO improves the performance in the presence of 
measurement noise. Moreover, the HGO can also be applied to 
the PID-TWIST algorithm for the sake of improving the 

performance but on the price of increasing the complexity of 
the control scheme.  

D. Experimental Validation of Proposed Methods 

The proposed control schemes were experimentally 
implemented to demonstrate their effectiveness in attenuating 
time-varying harmonic disturbances. The rotor was driven up 
from standstill to 3000 RPM and the rotor displacements in 
the horizontal and vertical directions were recorded every 200 
RPM rotational speed to examine the performance of the 
closed-loop system in the entire speed range. For the sake of 
evaluating the performance of the control schemes, the root-
mean-square (RMS) and the maximum values of the recorded 
rotor displacements were calculated. These performance 
measures for all the control schemes are then plotted against 
rotational speeds to facilitate the comparative analysis, see 
Fig. 6 and 7.  From Fig. 7, it is obvious that adopting a well-
tuned PID controller alone yields non-uniform rotor deviations 
in the entire operating range with two peaks at 1400 RPM and 
2600 RPM corresponding to the first two natural frequencies 
of the system. It is remarkable that these characteristics are not 
similar to simulation results presented in Fig. 5 which has one 
natural frequency at 2000 RPM. The reasons for this mismatch 
are mainly due to neglecting the fast dynamics (e.g. sensors 
and actuator) in the simulation analysis, the model parametric 
uncertainties, and applying constant amplitude time-varying 
harmonic disturbances.  

On the other hand, one can observe that applying the 
proposed 2-SMC add-ons improves the performance and 
minimizes the deviations of the rotor, both in the horizontal 
and vertical directions because these add-ons which 
compensate the effect of the rotor mass imbalance forces. In 
other words, the introduction of the 2-SMC components to the 
PID-controlled plant results in increasing the effective 
stiffness of the AMB to the harmonic disturbances.  From Fig. 
6 and 7, it is noticed that the deviations of the rotor are almost 
uniform and effectively attenuated in the case of PID-TWIST 
controller although achieving a uniform stiffness throughout a 
wide-range of operating speeds is a nontrivial task since it is 
required to tune, simulate and test the performance of the 
algorithms at many speeds. Furthermore, the characteristics of 
the two suboptimal algorithms are comparable and slightly 
better than the PID control in the low speed range up to 2000 
RPM. Beyond this rotation speed, the reduction in the PID-
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Fig. 4. The configuration of the proposed second sliding mode 
control schemes: (a) PID-TWIST, (b) PID-SUB1, and (c) PID-
SUB2. 
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Fig. 5. Comparative simulation results of the proposed 
controllers against PID controller for attenuating a time-varying 
harmonic disturbance.  
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SUB2 position deviations compared to the others is 
remarkable.  The degraded performance of the PID-SUB1 
algorithm at higher rotation speeds goes back to the inability 
of the simple numerical differentiator to estimate the signal 

M properly due to the combined effect of measurement noise 

and the harmonic disturbances. In general, these remarks are 
compatible with the numerical simulation results. 

To draw a conclusion on the performance of the control 
schemes in the entire speed range, the RMS performance 
measures are averaged. Furthermore, the maximum rotor 
position deviation encountered throughout the whole operating 
range is also picked and employed for fulfilling this objective. 
The averaged horizontal RMS rotor displacements, in the 
entire operating speed range, for PID-SUB1, PID-SUB2, and 
PID-TWIST are 30.15 μm, 27.58 μm, 20.13 μm, respectively 
against 39.26 μm for the PID controller which represent 
23.2%, 29.75%, 48.73% reduction in the rotor position 
deviations from the geometric bearing center, respectively. 
The maximum horizontal rotor deviations, in the entire 
rotation range, for PID-SUB1, PID-SUB2, and PID-TWIST 
are 86.40 μm, 88.92 μm, 68.40 μm, respectively against 
138.92 μm for the PID controller which represent 37.81%, 
36.00%, 50.76% reduction in the rotor deviations, 
respectively. These performance measures for the horizontal 
and vertical directions are summed up in Table I.   

VI. CONCLUSION 

In this paper, three control algorithms based on the concepts 
of 2-SMC have been proposed to handle model uncertainties 
and time-varying harmonic disturbances in AMB systems 
operating in a wide range of rotor speeds. The first one relies 
on the twisting algorithm while the other two employ the 
suboptimal algorithm. Simulation and experiments were 
performed to validate the effectiveness of the proposed 

techniques. It was shown that the twisting and the suboptimal 
algorithms can attenuate the maximum rotor deviation by 
50.76% and 37.81% respectively compared to the 
conventional linear controller. Furthermore, the proposed 2-
SMC method is easy to apply in practice and requires no 
information about the rotational speed.  

APPENDIX I 

The main system parameters and control settings used in the 
simulations are respectively listed in Table II and Table III. 

APPENDIX II  

This appendix shows the limitation of applying the 2-SMC 
approach for handling harmonic disturbances. For instance, let 
us consider a 2-SMC technique when applied to (13) which 
represents the dynamics of one controlled axis of an AMB 
system and for the sake of simplifying the analysis let us 
neglect the chattering problem. The sliding variable can be 
selected as (15) and therefore its first and second time 
derivatives can be derived respectively as follows: 

 
t

q q  
2 2

     (24) 

  
t

a q b u d a q b u d      
2 1

      (25) 

Let us assume that 

Table I  
A Summary for the Experimental Performance Measures 

Control 
Scheme 

Horizontal Axis Vertical Axis 

RMS (μm) 
(averaged) 

MAX 
(μm) 

RMS (μm) 
(averaged) 

MAX 
(μm) 

PID 39.26 138.92 35.50 121.50 

PID-SUB1 30.15 86.40 30.90 83.70 

PID-SUB2 27.58 88.92 30.92 80.10 

PID-TWIST 20.13 68.40 25.40 62.10 
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Fig. 7. Comparative experimental results for the maximum rotor 
deviations in the horizontal and vertical when rotated up to 3000 
RPM. 
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Fig. 6. Comparative experimental results for the RMS values of 
the horizontal and vertical rotor deviations up to 3000 RPM 
rotational speed.   
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It yields 
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 
  (27) 

then the equivalent control action ueq can be derived as 
follows: 

 
eq

d
u

b
       0


    (28) 

If the external disturbance is sinusoidal and similar to (3): 

  cosd m t   2
  (29) 

then its time derivative would be 

  sind m t    3   (30) 

Therefore (28) can be formulated as: 

  sin
eq

u b m t  



1 3   (31) 

Consider that the electrical dynamics of the system are 
described by the following first-order system [1]: 

 
du V R

u
dt L L

    (32) 

where V is applied voltage, R and L are the total resistance and 
inductance of one controlled winding respectively, while u 
represents the control current. If the resistance of the 
electromagnetic coil is neglected for simplicity, the maximum 
slew-rate should satisfy the following condition: 

 max
Vdu

dt L
   (33) 

From (28) and (33), the external disturbances can be 
effectively handled according to the following condition: 

 max
bV

d
L

   (34) 

Therefore, the angular frequency of the sinusoidal disturbance 
should satisfy the following relationship: 

 
max

b
V

m L



 3   (35) 

One can conclude that the application of a 2-SMC technique 
to handle harmonic disturbances is feasible as long as the 
above condition is satisfied.  
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