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ABSTRACT 

The growing interest in reducing fuel consumption and gas emissions provides an incentive 

for the automotive industry to innovate in the field of hybrid and plug-in hybrid electric 

vehicles. The two embedded power sources in these vehicles require an intelligent controller 

in order to make the best decision on the power distribution. Actually these controllers, often 

called energy management systems (EMS), are very important and greatly influence the 

achievable fuel economy. Many authors have studied the possibility of fuzzy based systems as 

they have proved to be robust, reliable and simple. However, they demonstrate a lack of 

optimality because their design is focused on the vehicle characteristics rather than the driving 

conditions. This paper proposes an approach that uses a fuzzy system fed with driving 

condition information in order to increase the controller effectiveness in every situation. The 

efficiency of the proposed controller is demonstrated through simulations.  
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1. INTRODUCTION 

In the last ten years, the automotive industry has developed the market of vehicle 

electrification, as it is seen as one solution to oil shortage and fuel inflation. Hybrid electric 

vehicles and plug-in hybrid electric vehicles are one of the most promising solutions to reduce 
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environmental impact of individual transportation. The intrinsic architecture of HEV and 

PHEV requires the implementation of an Energy Management System (EMS) that can 

manage the power split distribution effectively. The main purpose of the EMS is to make sure 

that the battery state of charge is kept within range when exploiting the charge-sustaining 

mode while improving the fuel economy over a complete trip.  

 

The state of the art in this field proposes many solutions that have their own advantages and 

drawbacks. The deterministic rule based methods use state machines to determine the vehicle 

operation in real-time using inputs from the driver and the vehicle [1] [2]. Fuzzy logic has 

also been used to build rule based strategies, which have proved an increase in the vehicle 

performance compared to the deterministic rule based methods [3] [4]. Both deterministic and 

fuzzy based strategies rely on the engineers’ expertise and offer computational simplicity, 

robustness and reliability. Generally a set of rules using carefully selected thresholds are 

implemented in order to optimize power train efficiency and maintain SOC within suitable 

levels. Nevertheless, these methods will consider only current driving conditions and, as a 

consequence, exhibit a lack of optimality in terms of fuel economy and gas emissions when 

considered on a complete journey. Global optimization techniques such as dynamic 

programming algorithm are used to find the optimal control of the vehicle in order to get the 

minimum fuel consumption over a complete driving cycle [5] [6] [7]. However such 

techniques require high computation time and relatively high performance processors. Also 

the future driving cycle has to be accurately known in advance. Consequently they cannot be 

used directly in real time applications but they remain powerful tools to evaluate real time 

controller performances. Some authors point out the fact that the driving profile greatly 

influences fuel consumption and the knowledge of near future driving conditions could be 

used to decrease fuel consumption. As a consequence they propose some driving pattern 

recognition methods which are used to take relevant decision on the power distribution [8] [9] 

[10].  

 

In this paper, the choice was made to use past and current driving information as an input to 

our fuzzy logic controller. The fuzzy logic keeps our controller simple and reliable. Moreover, 

the use of driving information allows an adaptive vehicle control relative to the different 

driving condition. The proposed controller will apply to a parallel hybrid configuration and 

will enable to maintain the battery SOC around a constant level of 30%. In a Plug-in Hybrid 

EV, the battery depletion will generally begin at 100% SOC, down to a level around 30% and 

then operate in charge-sustaining mode. However, a plug-in hybrid vehicle is likely to begin a 

route with an already discharged battery, where the fuel consumption will be more important 

and where energy management is critical for a reduced fuel usage. Hence, the paper will only 

cover the case of a parallel-hybrid operating in charge-sustaining mode. Section 2 will present 

the power train topology, section 3 will describe the developed DP algorithm and the 
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conclusions based on the obtained results, section 4 will present the developed real time 

controller and finally section 5 will present simulation results.  

 

2. VEHICLE TOPOLOGY 

The described vehicle has a parallel topology in the sense that power of both electrical motor 

and engine are added in order to provide the required power to the wheel. The battery pack 

can be regenerated by electrically braking the vehicle or by overpowering the engine. In all 

cases, power contributions of the two power sources have to satisfy the driver’s demand. The 

energy flow chart is described in Fig. 1 and torque and speed equations can be written as  
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where Nw, NICE and Ne are respectively wheel, engine and motor speeds, Tw, TICE and Te are 

respectively wheel, engine and motor torques, ipr, isec, img and ifin are respectively primary, 

secondary, motor and final drive ratio, igb is the selected gearbox ratio, ηpr, ηsec, ηmg, ηgb and 

ηfin are the drive efficiencies, Pw and Pe are wheel and motor mechanical power, sg is the sign 

function. 

 

The electric power train is composed of a Li-Ion technology battery pack that provides power 

to a voltage source inverter using IGBTs, the latter being able to drive a permanent magnet 

synchronous motor. The electrical power train configuration can be seen on Fig. 2. For a 

matter of space in our vehicle two major choices were made. The electrical power train does 

not contain any DC/DC converter in order to stabilize the bus voltage, thus the inverter will 

see a variable bus voltage depending on the required battery current. This will affect the 

whole power train efficiency. Moreover there is no clutch on the electrical motor shaft which  

 

 

Figure 1. Energy flow chart 

ICE
Primary 

drive
Gearbox

Secondary 

drive

Clutch

Final 

drive

Motor 

drive

Electrical

Motor

Pw

Pe

PICE



4 

 

Figure 2. Electrical power train configuration  

 

means that the electrical motor will always be coupled to the wheel and could work in 

inefficient area. 

 

The complete vehicle model was established in a previous work [11], the mechanical model 

provides an estimation of the required torque based on the information of the vehicle speed, 

the engine is simulated using a map that gives instantaneous consumption for every speed and 

torque and finally the electrical power train was characterized by its mathematical equations.        

 

3. ANALYSIS OF THE OPTIMAL BEHAVIOUR  

 

3.1 The Dynamic Programming Algorithm 

The dynamic programming algorithm is an efficient and ideal optimal control algorithm for 

non linear and complex systems [12], it was used to find the optimal power split ratio over a 

complete driving cycle that minimizes the global fuel consumption. The chosen control 

variables were the engine torque TICE and the gear ratio k. Control variables values are 

optimally determined by the DP algorithm over a driving cycle to minimize the fuel 

consumption, with an initial battery SOC of 30%. The dynamic system is the core of the 

algorithm and relates the battery charge/discharge rate with the control variables. This 

complex relation is established using the numerical model of the vehicle [11]. The cost 

function to be minimized is the global consumption Jtot given by  

 

 #$%$ =	 & '()�* , �����* +. Δ
-./

$01
		, (3) 

 

where '()�* , �����* + is the engine instantaneous consumption based on control variables 

values and Δ is the sample time of the DP algorithm. 

 

Architectural constraints written in (1) and (2) and physical constraints such as maximum and 

minimum torque of the electric motor and combustion engine allow writing constraints on 

engine torque for every wheel torque and speed. In that way, maximum and minimum engine 

torque are computed at each time step. From eq. (2), we derive:  

AC
DC
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where Temin and Temax are respectively the minimum and maximum torque of the electric 

motor.  

 

Furthermore physical constraints on engine speed set the constraints on gear ratio k. 

Consequently the admissible set of gear ratio is updated at every time step based on the 

information on vehicle speed 

 

 )�* ∈ O�* 							O�* ⊂ Q0; 1; 2; 3; 4; 5; 6X			, (6) 

 

where O�*  is the admissible set of gear ratios at time *. 

 

Finally, as the vehicle works in charge sustaining mode, the state of charge is constrained to 

be equal at the beginning and the end of the driving cycle. Equations (3), (4), (5), (6) and 

constraint on state of charge set the constrained minimization problem that can be solved 

using the Bellman principle of the DP algorithm [12]. As a constraint, a battery SOC below 

20% is not tolerated at any time. A DP solution which would provide only one event in time 

with a SOC < 20% would be discarded. 

 

The DP algorithm was run the 11 Facility-Specific Drive Cycles developed by Sierra 

Research Inc. [10] which describe vehicle operation over different types of roadway (arterial, 

local and freeway) with several congestion levels.  

 

3.2 Dynamic Programming Results Analysis 

The first step of the controller design was to observe the optimal behavior coming from the 

DP results. Since there is no clutch on the electrical power train, the vehicle can be run in only 

two main modes which are pure electric or hybrid. Also the purpose of DP results observation 

is to try to find two laws; one that rules the optimal power split decision during hybrid mode 

and one that rules the optimal decision for transition between pure electric and hybrid mode. 

 

In order to deal with the first point, the engine load points coming from DP results were 

plotted for every speed cycle. In each speed cycle it was observed that the engine always 

works around its maximum efficiency during the hybrid mode.  
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For the second point, required power to the wheel and electrical motor power were compared. 

In the case where the power of the electric motor matches the required power, this means that 

the vehicle is in pure electric mode and engine is off. On the contrary, the vehicle is in hybrid 

mode when the power from the electric motor does not follow the vehicle required power. For 

each driving cycles, it can be observed that the vehicle works in hybrid mode as soon as 

relatively high power is required. More precisely, the optimal behavior shows that the vehicle 

works in hybrid mode as soon as required power is above an approximately constant power 

threshold Pth. This is one of the findings in this research. When the vehicle required power is 

under this threshold Pth the vehicle works in pure electric mode. An example for “Arterial 

LOS A-B”, which is one of the 11 Facility-Specific Drive Cycles, can be seen on Fig. 3.  

 

The absence of a DC/DC converter between the battery and the inverter and the need for a 

flux weakening current at higher rotational speeds will increase the power losses in the whole 

electrical power train when high mechanical power is required. Examining the results from 

the DP optimization of Fig. 3, this can explain why the electric motor operates in a relatively 

low range of power. More interesting, the different results showed that the above mentioned 

power threshold can be observed for every speed cycles but varies with the type of driving 

pattern in order to sustain the battery SOC. In a general manner, Pth increases for high speed 

cycles and decreases for low speed cycles. The aim of the controller will be to compute Pth 

online in order to intelligently manage the transition decision based on the past driving 

condition and SOC.  

 

4. CONTROLLER DESIGN 

The hybrid mode of the controller is quite simple. A map is used to compute TICE and k for 

every vehicle speed and required torque in order to maximize engine efficiency. The imposed 

 

Figure 3. Power comparison on “Arterial LOS A-B” 
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motor torque compensates the engine torque in order to provide the required power to the 

wheel.  

 

The electric/hybrid transition management is made using the power threshold Pth which is 

computed using a fuzzy logic controller. The vehicle works on hybrid or electric mode when 

required power is respectively above or under Pth. The first step to design the fuzzy logic 

controller was to select 3 speed cycles out of the 11 which were used for DP. These 3 speed 

cycles are “Arterial LOS A-B”, “Freeway LOS A-C” and “Freeway LOS G”. They cover a 

wide speed range and have very different speed distribution profiles. A histogram of vehicle 

velocity for the 3 speed cycles was plotted and approximated using Gaussian distributions. 

The fuzzy logic controller has two inputs and one output, the first input is a moving average 

of the past speed and the second input is the battery SOC. The output is Pth. The membership 

functions for the speed are defined by the previous Gaussian distributions. In this way the 

fuzzy logic controller can locate current speed among the three speed distribution, and thus, 

benefit from the past driving information to adapt the control logic. The SOC input allows a 

feedback that helps maintaining SOC in its admissible range. The membership functions of 

both inputs are described on Fig. 4. 

 

Globally the defined rules increase Pth for high speed and high SOC in order to make pure 

electric mode preponderant. On the contrary, Pth is decreased for low speed and low SOC. The 

rules are listed in Table 1. The membership functions of the output Pth were constructed using 

DP results on the different driving cycles. 

 

The fuzzy logic controller uses classical Mamdani defuzzification. In order to improve 

drivability, the controller imposes a time delay between mode transition to avoid too many  

 

 

 

Figure 4. Membership functions for SOC [%], speed [km/h] and Pth [W] 
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Table 1. Fuzzy Logic Rules 

 

starts and stops of the engine. This additional constraint necessarily increases fuel 

consumption. The final controller can be summed up on the Fig. 5. The time frame for speed 

moving average is 60 seconds. 

 

5. SIMULATION RESULTS 

The vehicle used in simulation has a 35 kW peak electrical motor, a 35 kW engine, a 2.5 kWh 

battery pack and a mass of 565 kg without the driver. 

 

The proposed real-time controller is illustrated on Fig. 5 and was tested on the normalized 

urban Federal Test Procedure (FTP) cycle. Performances were compared to dynamic 

programming results. A fuel consumption of 4.80 L/100km was obtained for the fuzzy based 

EMS while the DP algorithm showed a minimal consumption of 4.32 L/100km. The evolution 

of Pth and SOC during the cycle can be observed on Fig. 6. It can be seen that the fuzzy logic 

controller adapt the threshold Pth based on the current speed profile. For example, after around 

230 s of trip, a faster speed profile is detected and Pth is increased. The fuzzy based EMS 

appears to well maintain SOC into its allowable range and we can note that further fuel saving 

improvement could have been done if the fuzzy based EMS was able to impose the final SOC 

at a lower level.  

 

 

Figure 5. Proposed real-time controller 

Rule 1 If speed is “fast” and SOC is “high” then Pth is “HST” 

Rule 2 If speed is “fast” and SOC is “normal” then Pth is “VH” 

Rule 3 If speed is “fast” and SOC is “low” then Pth is “MH” 

Rule 4 If speed is “medium” and SOC is “high” then Pth is “H” 

Rule 5 If speed is “medium” and SOC is “normal” then Pth is “M” 

Rule 6 If speed is “medium” and SOC is “low” then Pth is “VL” 

Rule 7 If speed is “slow” and SOC is “high” then Pth is “M” 

Rule 8 If speed is “slow” and SOC is “normal” then Pth is “VL” 

Rule 9 If speed is “slow” and SOC is “low” then Pth is “LST” 
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Figure 6. Fuzzy based EMS performance on the FTP urban cycle 

 

6. CONCLUSION 

The proposed EMS is able to perform charge sustaining mode in a plug-in hybrid electric 

vehicle. The controller design has been made on the basis of the DP algorithm results and the 

vehicle control is achieved by using a fuzzy system that benefits from previous trip 

information. The proposed controller has proved to offer good fuel economy performance, 

well maintain SOC and is able to adapt itself to the current driving condition.  
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