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Contribution of Permanent-Magnet Volume Elements
to No-Load Voltage in Machines
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Abstract—In permanent-magnet (PM) electrical machines, a
key role of PM material is to induce a voltage in a winding upon a
relative movement of the PM about that winding. Although useful,
PMs are costly and machine designers should optimize the contri-
bution of all the volume elements in PMs as much as possible. This
paper presents a new mathematical expression for the no-load
flux linkage generated by PMs. The mathematical expression
gives the flux linkage in terms of the PM geometry. This proves
to be efficient in evaluating the contribution of each local magnet
volume element to generate a no-load flux linkage. We propose a
method that uses the derived mathematical expression to optimize
the shape of PMs, and this method is applied to the case of a
conventional PM synchronous machine. The optimization process
uses the results from finite-element analysis, and the resulting PM
shape shows an increase of voltage induced per PM volume.

Index Terms—Cost optimization of machines, no-load voltage,
permanent-magnet machines, permanent-magnet shaping.

I. INTRODUCTION

T HE step toward light and efficient electrical machines
has been pushed by the use of permanent-magnet (PM)

materials with a high remanent flux density. In synchronous
machines, bulky rotor windings can nowadays be successfully
replaced by rare-earth PM material. Although smaller in size
than conventional rotor electromagnets, PMs have a much
higher specific cost (in dollars per kilogram) than laminated
steel and copper. Nowadays, one can purchase Nd–Fe–B
magnets for about 35 US$/kg, where the cost for standard
0.5-mm-thick steel laminations is around 1.5 US$/kg. In many
cases, the cost of PM material is a significant part of the total
machine costs.

The subject of PM shapes has been discussed in [1]–[3]. How-
ever, in those contributions, the PM shapes are not optimized
with respect to the amount of induced voltage per cubic mil-
limeter of PM material. Do all volume elements inside the
PMs contribute equally to induce a no-load voltage in the stator
winding? Is it possible that some part of the PM volume brings a
high contribution to the no-load voltage, while other parts would
bring a lower contribution? In this paper, the aim is to find a gen-
eral method to minimize the cost of PMs in a given machine, by
minimizing the PM volume in that machine. This is done by
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identifying which parts of the PM volume have a high contri-
bution to the total magnetic flux linkage induced in the stator
winding at no-load.

In order to obtain the local PM contribution to the total
flux linkage, a mathematical expression is derived for the
flux linkage generated by a PM. This expression integrates a
function over the sole volume of all the PMs considered in
the machine. Usually, the flux linking a coil is obtained by
computing the flux density over the coil surface. In this paper,
the no-load flux linkage is obtained by calculating field values
over the PM geometry rather than the coil geometry. For the
optimization of PM shapes, this new way of expressing flux
linkage appears to be more practical than the conventional ex-
pression. Using this mathematical expression, we can attribute
to each volume element inside the PM a local contribution
to the no-load flux linkage.

In the end, the machine designer is more interested in the in-
duced voltage, rather than flux linkage. According to Faraday’s
law, the induced voltage is obtained when the no-load flux
linkage varies with time. In PM machines, this is obtained by
moving the PMs with a given speed. With a case example,
we show that the contribution to no-load flux linkage for a
given PM volume element varies with the rotor position.
Therefore, its contribution to the instantaneous no-load voltage
also varies with position and time. However, a contribution to
the average no-load voltage can be obtained by integrating the
no-load voltage over all electrical angles during one half-cycle.
In that case, each volume element inside the PMs has a fixed
contribution.

The last part of the paper presents a method used to create
PM shapes so as to maximize the average no-load voltage per
volume of PM material. This method uses the theoretical results
proposed in the paper. With the use of finite-element analysis
(FEA), we show that such a method allows the design of cost-
effective PM shapes. The case example given in this paper is a
conventional PM synchronous machine. With FEA results, we
show that V-shaped magnet blocks have a higher ratio of V/mm
than conventional rectangular blocks.

II. PM LOCAL CONTRIBUTION TO FLUX LINKAGE

A. Problem Definition, General Case, and Assumptions

In Section II-B, a mathematical expression will be derived for
the no-load flux linkage generated by the PMs. The derivation is
meant to be general and can be applied to different kinds of PM
machines. A generalized PM machine is shown in Fig. 1, where
the shapes of iron, PM, and coil inside the machine boundaries
are arbitrary.
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Fig. 1. Generalized PM machine, with arbitrary iron, PM, and coil shapes.

In Fig. 1, all PM material in the machine is contained in
the volume , all steel is contained inside the volume ,
and the remaining space within the machine boundary is con-
tained inside the volume . Outside the machine boundary,
the vector quantities , , , and created by the
coil and the PMs are negligible. Also, the PM and coils pos-
sibly existing outside the machine create a magnetic field that
is negligible inside the machine boundary. In itself, the machine
boundary is defined as a region in space containing all the mag-
netic fields and formed by the machine coil and the
machine PM and inside of which the externally created mag-
netic fields are negligible.

The first step in the elaboration of a shaping method for PM
blocks is the derivation of an expression for the no-load flux
linkage. Before going through the details of this mathematical
derivation, three assumptions are stated.

1) Assumption of Rigid Magnetization for PMs:All PMs in-
side the machine boundary have rigid magnetization, i.e.,
curves inside the PM are defined by (1)

(1)

In (1), and are, respectively, the flux density and mag-
netic field intensity inside the PMs. is the PM remanent
flux density and has a constant magnitude. The PM recoil per-
meability is assumed to be 1. These assumptions are not
serious limitations to the derivation exposed further if the per-
manent magnets like Nd–Fe–B magnets are used. “Real-life”
Nd–Fe–B magnets have typical values of their recoil relative
permeability in the area of 1.0 to 1.1 and have a char-
acteristic that is approximately linear from down to

T.
As mentioned in the last paragraph, is assumed to have

a constant magnitude for any point inside the PM, no matter
the intensity of the magnetic field at that location. However,
the orientation of the vector may vary inside the PM. In
this paper, we consider an example where the remanent flux
density has constant magnitude and orientation throughout the
volume of a PM. However, a companion paper [4] describes
the advantages of varying the orientation of inside the PM
volume.

2) Assumption of Ideal Ferromagnetic Material for Steel:It
is assumed that all iron parts are ideal: they have infinite per-
meability and are nonsaturable. Standard “real-life” cold-rolled
steel materials have an initial relative magnetic permeability
many orders of magnitude higher than unity. As a consequence,
this assumption of ideal iron appears to be reasonable. However,
the validity of the method proposed in this paper needs to be
carefully analyzed for cases where iron saturation would occur.
This is not done in the paper.

3) Assumption of Constant Magnetic Vector Potential
Throughout the Conductors’ Cross Section:The magnetic
vector potential is assumed to have constant magnitude and
direction through any given cross section of the conductors. The
word “conductors” here only refer to the conductors forming
the coils inside the machine boundary. This is the theoretical
case of filamentary conductors, which have currents flowing
through an infinitely small cross section.

In practice, the variation of the magnetic vector potentialis
very small when the conductors are wound around a ferromag-
netic core, as in most electrical machines. In the latter case, most
of the magnetic flux flows inside the iron and the variation of
through the conductor cross section may be considered as neg-
ligible compared to the absolute value ofon that conductor.

For conductors in empty space (or air), the variation of
through the conductor cross section may be considered as neg-
ligible if the conductor cross section is made sufficiently small.

B. Mathematical Derivation

In the system of Fig. 1, we consider a coil made of several
turns, where a currentis allowed to flow. We write the product

“seen” by that coil

(2)

where and are the flux linkage and flux density linking the
coil, including the flux created by the PM and the flux created
by current . is the current density vector inside the conductor,

is a surface bounded by the complete coil, and is the
cross section of the conductor, as shown in Fig. 2. It should be
noted that the boundary of S can be set anywhere inside the
conductor, as long as the assumption of constant A inside the
conductor is met (assumption 3).

As discussed by [5], is the sum of the magnetic energy and
magnetic coenergy “seen” by the coil. It may look like an un-
usual starting point, but it will be useful later in this derivation.

In (2), we replace by the curl of the magnetic vector poten-
tial , and Stoke’s theorem is applied to obtain

(3)

As described in [6], the conductor can be divided into an in-
finite number of small current tubes carrying infinitesimal cur-
rents and inside of which the current densityis conservative
(electric flux density varies very slowly with time). Inside
each infinitesimally small current tube, the current densityis
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Fig. 2. S andS for one turn of the coil.

parallel to and is also parallel to . Then, (3) can be
written as a volume integral

(4)

if the variation of throughout the conductor cross section is
negligible (assumption 3). In (4), is the total volume of
conducting material forming the coil. Equation (4) can be ex-
pressed in terms of and , as demonstrated in Appendix I.
We rewrite (4) as

(5)

The development of (4) and (5) is done in the same way
here as for the expression of magnetostatic energy derived in
common textbooks [6]–[8]. However, (4) and (5) are not mag-
netostatic energy, but rather the sum of magnetostatic energy
and coenergy.

The three variables , , and of (5) have a component
created by the current in the coil and a component created by the
PMs. The assumptions of linear PM (assumption 1) and ideal
iron (assumption 2) allow us to subdivide, , and into

, , (component created by the current flowing in the
coil, when T), and , , and (component
created by the PM alone, when ). The components ,

, , and are shown in Fig. 1. We rewrite (5) as

(6)

It is shown in Appendix II how the product can be
written in terms of an integral over the PM volume. With the
result of Appendix II, we rewrite (6) as

(7)

where is the no-load flux linking the coil, and is the
remanent flux density vector of the PM. From (7), we obtain an
expression for

(8)

Equation (8) expresses the flux linkage in terms of a func-
tion, which is integrated over the sole volume of all the PMs
interacting with the coil. It gives every volume element in-
side the PMs a contribution to the total flux linking the coil at
no-load.

For any rotor position, one may inject a currentin the coil
and compute in the volume of the PM. Integrating the dot
product of with over the PM volume gives the no-load
flux linking the coil into which the current was injected.

There is a reciprocity relationship between (8) and the con-
ventional expression of no-load flux linkage given by (9).

(9)

In (9), the flux linkage at no-load is defined as a magnetic
quantity created by the PM acting on the geometry of
the coil , while in (8), is expressed as a magnetic
quantity created by the coil and acting on the geometry of
the PM .

III. PM L OCAL CONTRIBUTION TO INSTANTANEOUS AND

AVERAGE NO-LOAD VOLTAGE

A. Instantaneous No-Load Voltage

From (8), we may define an expression for the local contribu-
tion of each PM volume element to the total no-load
flux linking the coil

(10)

It must be noted that is not written as a function of
the current , because for a linear system, will be propor-
tional to . Modifying will not affect .

Equation (10) gives each volume element inside the PM a
contribution to the no-load flux linkage. However, if (10) is
used to calculate the contribution of each PM volume element
to the no-load voltage, the time-dependence ofmust be care-
fully analyzed. From Faraday’s law, we know that the no-load
voltage is time-dependent and in fact results from the motion
of all these PM volume elements. Equation (10) is written as a
time-independent expression, which is not satisfactory when it
comes to the calculation of. In this section, we will analyze
the role played by time and motion in the contribution of each
PM volume element to the no-load voltage.

We set an arbitrary orthogonal coordinate system ,
which is attached to the PMs. A distanceexists between the
origin of this coordinate system and the fixed stator.
For the moment, we will assumeto be constant in time, and
we will only allow the current to vary in time. Let us writeas
a function of the coordinate system and the distance

(11)

where

(12)
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Fig. 3. Stator and rotor of a three-phase conventional PM synchronous
machine. Only phase A is fed as shown here. Rotor position fort = t .

In (11), it must be noted that is expressed as a function of
only and is independent of timeand distance. How-

ever, is expressed as a function of the distance, because
its reference is not attached to the PM coordinate system.

If we allow the distance between the PM and the stator to
vary with time, we can rewrite (12) as

(13)

Clearly, as soon as the PM is moving andbecomes a func-
tion of time, the local contribution functionis not fixed in time.
The instantaneous no-load voltage may be written as

(14)

where is defined by (13).
Until now, this discussion was general. Equations (8) and

(14) can be used to calculate the no-load flux linkage and
voltage for virtually any magnetic circuit containing PM ma-
terial, as long as the three assumptions of Section II-A are met.
For the rest of the paper, a real machine example is used. The
machine geometry used is a conventional PM synchronous ma-
chine. This example is shown in Fig. 3. The machine shown in
Fig. 3 has one slot per pole per phase and its design specifica-
tions are given in Appendix III. If we impose a movement in the

axis with a fixed speed to the rotor, we have

(15)

where and are constants. Fig. 4(a) and (b) illustrates the
local contributions of two points inside the PM at two different
positions of the rotor. In both rotor positions, the coordinates

of these two points stay the same. In Fig. 4, only one
coil is fed with a current in order to obtain the contribution
to the flux linkage in that coil. This explains the nonuniform
distribution of inside adjacent magnets.

In Fig. 4(a), the left point has a higher absolute contribution
than the point in the middle of the PM, where in Fig. 4(b), the

(a)

(b)

Fig. 4. (a) Dot product ofHHH � BBB computed with FEA ford(t ) = �t ,
andt = t . Two points are indicated, showing high and low contribution to
no-load voltage.BBB is constant and homogenous in the volume of each PM.
The coil current isi = 10 A. (b) Dot product ofHHH �BBB computed with FEA
for d(t ) = �t , andt = t . The same two points as in (a) are indicated inside
the PM. The contribution to the no-load voltage is different.BBB is constant and
homogenous in the volume of each PM. The coil current isi = 10 A.

same left point has a lower absolute contribution than the middle
point.

From (13) and (14), we conclude that the contribution of each
PM volume element to the no-load voltage is time-dependent,
and from the example of Fig. 4, we conclude that this contribu-
tion is constantly changing inside the volume of the PM while
the rotor is moving. At some location inside the PM, the con-
tribution to the no-load voltage changes from high to low upon
the rotor translation, while at another location, it changes from
low to high.

The first objective of this paper is to evaluate how we can re-
move the volume elements having the lowest contribution to the
no-load voltage. Since the shape of the PM cannot be modified
during its motion, the knowledge of the instantaneous local con-
tribution to has little practical interest, because it is changing
constantly with the motion of the rotor.
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B. AverageNo-Load Voltage

It is more practical to obtain the local contributions of PM el-
ements to the average no-load voltage , because the average
no-load voltage is time-independent. Over one electrical period,
the average no-load voltage is of course zero for a symmetrical
machine. However, it is possible to define the average no-load
voltage over one half-period

(16)

where is the average no-load voltage over one half-period,
and is the electrical period. In (16), the integration boundary

is the time instant where the rotor PM is completely
facing the stator pole, and for which the no-load flux linkage
is maximum [see Fig. 4(a)]. The time instant is
the time instant for which the next PM is completely facing the
stator pole and for which the flux linkage has the same value as
for , but with opposite polarity. From (16), we can write

(17)

Inserting the result obtained with (8) into (17), we obtain

(18)

In (18), only one sample of and one pattern of magnetic
field intensity are used, that is, for . In this case, each
volume element has a fixed contribution.

In (18), only one value of is used. However, it is not required
that the injected currentremains constant during the rotor dis-
placement over one half-cycle. In reality, the no-load voltage is
not a function of the current waveform. Even though the no-load
voltage cannot be measured when current is flowing in the coil,
the average no-load voltage is still present, and the proposed
method allows the calculation of its value under loaded condi-
tions. It must be noted that setting in (18) would give an
indetermination, because then and .

IV. M ETHOD FOR THESHAPING OF PM

The mathematical expression given by (18) allows us to
propose a method for the optimal shaping of PM. This method
is used to shape the PMs, so as to obtain an increased average
no-load voltage across one coil of a machine per cubic millimeter
of PM material. The method may use either FEA or analytical
calculation in the following manner.

• Consider the rotor position for which the PM faces the
stator pole completely, as in Fig. 4(a).

• Replace all PM by vacuum in the FEA model, or in the
analytical calculation.

• Inject a current I in the coil across which we want to
obtain the average no-load voltage.

• All other coils have .
• Calculate the field inside the volume that would be

filled by all PM.

Fig. 5. Instantaneous and average no-load voltage computed point-by-point
with FEA, for every rotor position. The PM shape type has adjacent rectangular
blocks (same as Fig. 3). The result is given in volts per meter because 2-D FEA
software is used.

• Do the dot product of with inside all the PM
volume in the machine. This will give out the contribu-
tion of each volume element inside the PM.

• Remove the volume elements with the lowest values of
.

V. APPLICATION: FEA RESULTS

In this section, the proposed method is used to optimize the
shape of PM in the conventional PM synchronous machine
of Fig. 3. In Fig. 3, the distance between two adjacent PMs
is zero. It is common practice to keep a certain distance
between two adjacent PMs, where it is expected that a strong
flux leakage between magnets is found. In the area near the
boundary between two magnets, the flux created by the PMs
does not contribute significantly to the flux in the stator coil.
Machine designers consider the frontier area of two PMs as
less useful PM material and, therefore, they tend to remove
PM material in that region. The obtained magnet usually has
a rectangular shape, with a distance of 0.1 to 0.3 times the
pole pitch between adjacent magnets. In this paper, we give
ourselves more freedom in the types of PM shapes than only
rectangular shapes.

Before going through the PM shaping method, the average
no-load voltage and the no-load instantaneous voltages are ob-
tained by moving the rotor of Fig. 3 about the winding. For every
position, the no-load voltage is computed with FEA. The re-
sulting waveform is shown in Fig. 5. We will use this result to
validate the method proposed in Section IV.

With the new method proposed in Section IV, all PMs of Fig. 3
are replaced by vacuum. A current A is injected in
the coil. The dot product of and is computed inside the
volume of the PM by using 2-D FEA software. The distribution
of is shown inside the PM in Fig. 4(a), which represents
the contribution of each PM volume element to the no-load
flux linkage in the coil, and to the average no-load voltage

across that coil.
It must be noted that in this example, the current is injected in

only one coil of the machine. As a result, the magnetic field
is spread throughout all the PMs in the machine, and the volume
integration must take place over all PMs. Usually, windings and
rotor poles are identical for all poles throughout the machine.
Thus, volume integration can take place on only one pole due
to the symmetry between poles. In a symmetrical distributed
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Fig. 6. New PM shapes obtained with the method.

winding, for example, it may be more useful to feed a complete
winding, instead of individual coils. Even though this is an easy
step to make, the symmetrical case is not covered in the paper,
which aims to be more general.

As expected, the region in Fig. 4(a) near the boundary
between two PMs has the lowest contribution to the average
no-load voltage. If PM elements are to be removed from the
PM volume, they should indeed be taken from that region near
the frontier between neighbor magnets. However, Fig. 4(a)
suggests that PMs should not be cut in rectangles, as is usually
done, but rather with a V-shape. The PM could be shaped as
shown in Fig. 6.

In Fig. 6, the section of PM material with the new V-shape
has a cross section of 120 mmper magnet, compared with
144 mm per magnet for the initial block shape of Fig. 3. The
no-load flux linkage for the new V-shape in the rotor position
shown in Fig. 6 is 0.0160 Wb/m, compared with 0.0176 Wb/m
with the initial block shape. The decrease in PM cross section
is 17%, while the decrease in flux linkage and average no-load
voltage is only 9%. The amount of V/mmgenerated by the PM
at no-load has increased by 8% with the new V-shape. Table I
shows the no-load flux linkage and average no-load voltage for
the two PM shapes.

Columns 3 and 5 in Table I are computed using the method
shown in the paper with (8) and (18). For comparison purposes,
column 2 gives the no-load flux linkage obtained by integrating

over the coil area [conventional method expressed by (9)].
The difference between the conventional way of computing the
no-load flux linkage (column 2) and the expression derived in
the paper (column 3) is below 0.6% if the relative recoil perme-
ability of the Nd–Fe–B material is unity.

We can expect the difference in flux linkage between the con-
ventional and the new calculation method to grow as the relative
recoil permeability moves away from unity. A common value of

has also been used with the conventional expression
(column 2), and the difference between column 2 and column 3
has increased to about 4% (see Table I).

The average no-load voltage obtained with the proposed
method (column 5) is also closely corroborated by the
point-by-point estimation (column 4). For the sake of com-
pleteness, the average and instantaneous voltages are also
computed with FEA by moving the rotor point-by-point with
the V-shape PM. The result is illustrated in Fig. 7.

TABLE I
FEA RESULTS FOR TWODIFFERENTPM SHAPES

Fig. 7. Instantaneous and average no-load voltage computed for every rotor
position, using FEA. PM shape type has V-shape (Fig. 6).

The induced voltage of Fig. 7 displays a more sinusoidal
waveform than that of Fig. 5. The average no-load voltage is
matched by the value obtained with the proposed method within
4%. Although small, this 4% difference is once again explained
by the assumption in the proposed method, of PM material
having unity recoil relative permeability. In the FEA model
used to compute the flux linkage with the point-by-point calcu-
lation, real material parameters have been used .

In this example, the optimization method gives an improve-
ment of 8% in the amount of volts per cubic millimeter of PM
material. With the expression of the no-load flux linkage given
by (8), we note that the possible improvements by magnet
shaping are very much dependent upon the fringing of the
magnetic field in the interpole area.

A thin air gap and a large pole pitch will result in very little
possible improvement of the V/mm. This is due to the presence
of a largely one-dimensional magnetic field, which according
to (8) gives a homogenous contribution for the PM volume ele-
ments. However, a thick air gap and a short pole pitch will see
a large part of the magnetic field created by the stator winding
fringing the PM border. In such cases, the shape optimization
process described in this paper may bring good PM material
savings. This is especially the case in surface magnet trans-
verse-flux PM machines, where pole pitches of 1 cm have been
reported [9]. This is the subject of a companion paper [4].
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VI. CONCLUSION

The paper proposes a new method to maximize the amount
of Wb/mm and V/mm of PM material in a PM machine. The
method is based on a new mathematical expression for the flux
linkage created by a PM, which is derived in the paper. The
expression describes the no-load flux linkage as the interaction
of the stator-created magnetic field with the PM remanent flux
density within the PM volume. The flux linkage is calculated
by injecting a current in the winding considered, while the PM
volume is replaced by vacuum. A plot of the contribution to the
no-load flux linkage can be drawn inside the PM, and the areas
of lower contributions may be left out.

Since the local contribution of each PM volume element to
the instantaneous no-load voltage varies when the rotor moves
about the winding, we chose to work with the contribution to
the average no-load voltage, which is time-independent.

This method was applied to a configuration of a three-phase
conventional PM synchronous machine, with a pole pitch of
24 mm. The new expressions of no-load flux linkage and av-
erage voltage derived in the paper are in good agreement with
the conventional formulas. The no-load flux linkage and average
no-load voltage are within 0.6% of the values calculated with the
standard mathematical expressions for PM with .
The difference between the two methods was below 4% when
real PM material properties were used .

After applying this optimization method, the optimized PM
shape had a V-shape rather than a rectangular shape. The av-
erage no-load voltage per cubic millimeter was increased by 8%.
This improvement can be higher in the case of higher ratio of air
gap over pole pitch, as it could be the case for a transverse-flux
PM machine with surface magnets.

APPENDIX I

In (4), is the total volume of conducting material
in one coil inside the machine. We must remind the reader
that the machine stator is assumed as composed of several
coils, which may or may not be symmetrically laid out in
the stator. Each coil is made of several turns, and we are
interested in obtaining the flux linkage of one coil in order to
determine the no-load voltage across that coil. Because we are
interested only by the flux linking that one coil, all other coils
are considered in the present analysis as having no current
flowing through them. All other free charges in the volume

are also assumed to stand still. Let us also imagine
that the only PM bodies found in the universe are contained
inside the machine boundary. The presence or the absence
of a current density and PM bodies outside the machine
boundary will not affect the value for flux linkage that we
will obtain in the coil, provided that the machine boundary is
sufficiently large. As a consequence, the assumption of zero
current density and no PM in the entire universe extending
outside the machine boundary can be made.

We can rewrite (4) by extending the integration boundary to
all universe, given the current densityis zero everywhere, ex-
cept in the coil for which we want to calculate the no-load flux
linkage

(AI.1)

With the assumption of conservative(electric flux density
varies very slowly with time), we rewrite (AI.1)

(AI.2)

Using a well-known vector identity (see [10]), we obtain

(AI.3)

We obtain (AI.4) by replacing the curl of by in the second
term, and by applying Stoke’s theorem to the first term

(AI.4)

The only sources of considered here are the PM and the
coil, which are both located inside the machine boundary. Thus,
at the boundary of universe, the magnetic fieldvanishes, and
only the second term of (AI.4) remains

(AI.5)

APPENDIX II

Equation (6) is once again written

(AII.1)

From Maxwell’s equations, we have

(AII.2)

and

(AII.3)

As demonstrated in [11], the integral taken over all space of the
dot product of two vectors is zero, if the curl of the first vector is
zero, and the divergence of the second vector is also zero. This
identity is expressed as

(AII.4)

This allows us to rewrite (AII.1).

(AII.5)

This paper focuses on the flux linkage created by the PM
in the coil. To obtain , we can use (AII.5) and substract the
component . This is easily obtained from (5) by considering
the case where the only fields and flux linkage present inside
the machine are being created by the current flowing in the coil.
We express as

(AII.6)
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Inserting (AII.6) into (AII.5), we obtain

(AII.7)

This result is also obtained in [11]. In (AII.7), the domain of
integration is still the entire universe. It is possible to simplify
this expression further if we divide the total universe into four
subdomains: the volume of the PM in the machine, the
volume of iron in the machine, the volume of air inside
the machine, and the volume of all universe outside the
machine boundary. It must be noted that contains not only
air, but all material for which permeability is unity (like coils,
insulators, etc.). The four domains of integration are shown in
Fig. 1.

1) Subdomain
Inside the PM, the constitutive relation is given by (1).

We rewrite (AII.7) for the PM volume

(AII.8)

Because is the field obtained when the magnets are
replaced by vacuum, we rewrite (AII.8)

(AII.9)

2) Subdomain
Inside the iron, the magnetic fields and are

zero, because of assumption 2 in Section II-A. We can
write

(AII.10)

3) Subdomain
The subdomain of air also shows a reciprocity relation

between , and , . We can write

(AII.11)

4) Subdomain
As defined previously, the vector quantities , ,
, and are zero outside the machine boundary. We

can write

(AII.12)

Summing the four subdomains, we obtain the entire
universe. We insert (AII.9), (AII.10), (AII.11), and
(AII.12) into (AII.7), and write

(AII.13)

Because of (AII.4), we can simplify (AII.13) to obtain

(AII.14)

APPENDIX III

The conventional PM synchronous machine used throughout
this paper has the following geometrical specifications:

Electrical time period ms
Distance between two poles: 24 mm
Distance between two slots: 8 mm
Air gap: 2 mm
Radial thickness of the PM: 6 mm
Slot width: 4 mm
Slot depth: 8 mm
Material used for the PM:

Nd–Fe–B
B T and

Specifications for the rectangular PM shape (Fig. 1):
Width of the PM mm
Distance between two adjacent PM mm

Specifications for the V-shape PM (Fig. 6):
Width of the PM in the top part mm
Width of the PM in the bottom part mm
Distance between two adjacent PM mm.
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