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Analytical Calculation of No-Load Voltage Waveforms in Machines
Based on Permanent-Magnet Volume Integration
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We develop an analytical expression for predicting electromotive force (EMF) waveforms resulting from permanent magnets (PMs) in
electrical machines. The expressions for the flux linkage are based on a volume integral over the magnet volume, rather than the usual
surface integral over the coil. The proposed method consists of applying a virtual current in the coil of the machine and calculating the
magnetic field generated inside the PM volume. The EMF waveform is obtained by taking the derivative of the flux linkage with respect
to time. We present analytical expressions of the EMF for various PM shapes and Halbach magnetization patterns. We tested a total of
four configurations of PMs, and the experimental waveforms confirmed the validity of the expressions obtained theoretically.

Index Terms—Analytical calculation, Halbach arrays, permanent-magnet machines.

I. INTRODUCTION

FARADAY’S law states that the motion of permanent mag-
nets (PMs) in the vicinity of a coil creates an electromotive

force (EMF) across that coil. In this paper, analytical expres-
sions will be derived for the EMF waveform. In past scientific
literature, the derivation of the flux density created by the
PMs is discussed, rather than the EMF or flux linkage. In [1], [3],
[6], [8]–[10], is derived analytically by solving Maxwell’s
equation with either a scalar potential or vector potential for-
mulation. For the EMF [7] proposes an expression using the
space harmonics of and the stator winding factor for each
harmonic, once is known.

In past literature, the PM configurations studied were usu-
ally simple (rectangular with radial or parallel magnetization of
the PMs). Even with a simple magnet structure, the solutions
give long analytical expressions of . For more sophisticated
magnet geometries, e.g., a pyramidal configuration, the com-
plexity of the boundary conditions will give rise to significant
mathematical difficulties when solving Poisson’s or Laplace’s
equation.

In this paper, a different mathematical approach is developed
for the case of more elaborate magnet geometries.

The proposed analytical method is based on the concept of
volumetric flux contribution of magnet elements, developed by
the author in [2]. Flux linkage is obtained by integrating the dot
product of (coil-created magnetic field) and (PM re-
manent flux density) over the magnet volume, divided by the
coil current . This is useful when sophisticated magnet volumes
are considered, because the magnetic field is not dependent
upon the magnet boundaries (for a given air-gap thickness). Fi-
nally, the electromotive force is obtained by applying a con-
ventional time derivative to the no-load flux linkage.

This method of PM volume integration was previously pre-
sented in [2] and is here applied to the study of the EMF in a ma-
chine with circular rotor. The case of a slotless stator core with
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an infinitely thin current distribution is considered in the paper
and four magnet geometries are presented in order to show the
usefulness of the proposed method.

II. NO-LOAD FLUX LINKAGE IN PM MACHINES

A. Conventional Expression of Magnetic Flux Linkage
and Faraday’s Law

Faraday has described the electromotive force across a coil as
the time derivative of the magnetic flux linking said coil. Usu-
ally, the magnetic flux linkage is calculated by integrating the
flux-density over the coil surface, or mathematically

(1)

where

In (1), is the electric field, is the magnetic flux density, and
is the contour of the coil surface .
For the EMF of PM machines, is the flux density generated

by the PMs, considering that no current flows through the stator
coil leads.

Equation (1) implies that permanent magnets are a source of
magnetic flux, which is collected by the coil. The result is a flux
linkage in the coil, which value depends on the source of flux
density (the PMs) and the collector geometry (the coil surface),
as depicted in Fig. 1.

B. Reciprocal Relationship

A mathematical expression has been developed in [2] to ex-
press the no-load flux linkage in a different manner

(2)

where is the flux linking in the stator coil under no-load con-
dition, is the magnetic field intensity created by the stator
coil alone (that is, when the PMs are replaced by air) upon the
application of a current in the coil. is the PM remanent
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Fig. 1. The coil as a collector of B .

flux density and is the volume of the PMs. Here, we note
that (2) is expressed as a volume integral of a vector operation,
which is different from the conventional surface integration of
(1). Equation (2) is mathematically equivalent to (1), as long as
the following assumptions are met.

— PMs have rigid magnetization, that is constant magnetiza-
tion and recoil permeability .

— Steel parts are ideal (no saturation and infinite
permeability).

— Constant magnetic vector potential throughout the coil
conductors cross section, that is, assumption of filamen-
tary conductors.

At this point, the reader may be uncomfortable with the idea
that the flux linkage under no-load condition expressed with
(2) is equivalent to (1). However, the demonstration of this
equivalence was established in [2] and will not be repeated here.
Experimental results presented in Section IV of the present
paper will confirm the validity of (2). The mathematical form
of (2) suggests that the no-load flux linkage in the coil may also
be viewed as a quantity obtained when the magnetic field
produced by the coil is collected by the PM volume elements,
each of which carries a certain remanent polarization .

Such expression (2) is reciprocal to the conventional expres-
sion for , in the sense that the source of the magnetic interaction
is the coil, whereas the collector geometry is the PM volume, as
depicted in Fig. 2. Provided that the mentioned assumptions are
met, (2) is useful because it simplifies analytical calculations for
machines with regular stator coils and irregular PM shapes.

III. NO-LOAD VOLTAGE FOR REGULAR AND IRREGULAR PM
SHAPES WITH AN INFINITELY THIN STATOR COIL

In this section, an analytical expression is derived for the
no-load flux linkage and electromotive force for the case of
a PM machine with a simple stator winding, that is a slotless
stator with an infinitely thin winding (Fig. 3). Although a simple
stator winding is used, greater complexity is considered for
the rotor. PMs with various block configurations are proposed
[Fig. 4(b), (c), (d)]. A modification of the PM geometry will not
change the analytical expression itself, but rather modify the
integration boundaries, as will be discussed in Section III-C.

Four PM shapes are proposed: a simple rectangular magnet
[Fig. 4(a)], a pyramidal stack [Fig. 4(b)], a T-shape magnet
[Fig. 4(c)], and a Halbach array [Fig. 4(d)] with two different
magnet thicknesses for the tangential and the radial magnets.

Fig. 2. The PM as a collector of H .

Fig. 3. The PMs in the air-gap space. Regular PM shape.

These shapes are more or less arbitrary. Other PM shapes could
be analyzed with the same method.

In the analysis, and are respectively the radius of the
rotor and the stator. is the total thickness of the rotor mag-
nets and is the mechanical air gap. With respect to the angles
presented in Fig. 3, is the mechanical angle (in rad) with re-
spect to the fixed stator winding (see Fig. 3). is the mechan-
ical angle occupied by one pole.

Upon rotation of the rotor, the latter will make an electrical
angle with respect to the fixed stator (mechanical angle is ).
The references for and are shown in Fig. 3.

The stator coil is modeled as a surface current distribution laid
out on the surface of the stator laminations with constant radius

. The PMs are mounted on the surface of the rotor, which has
a constant radius .

A. Coil-Created Field

In the derivation of the no-load flux linkage , the first step
consists in expressing the magnetic field intensity created
by the coil, as prescribed by (2).
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Fig. 4. Examples of regular (a) and irregular magnet geometries (b,c,d). These
configurations are analyzed in the paper.

In cylindrical coordinates, the stator-created field has been
derived in previous scientific literature [5] for an infinitely thin
winding:

(3)

(4)

where and are the radial and tangential components
of the stator-created magnetic field intensity in cylindrical coor-
dinates and is the number of pole pairs in the machine. is
the coil winding factor for each th harmonic.

For example, in a full-pitch winding, is expressed by

(5)

where is the total number of turns in the machine and is
the order of the harmonic [5]. is the electrical angle (in rad)
occupied by the coil in a full-pitch winding.

It must be noted that, in this paper, the stator winding is as-
sumed to be symmetrical, giving only odd harmonics in (3) and
(4).

B. Derivation of Electromotive Force for a Regular PM Shape

To obtain the flux linkage under no-load condition through
one stator coil from (2), the integral volume extends from ra-
dius to radius , from mechanical angle

to , and from axial length
to . In the paper, PMs may have radial and tangential
polarization components and . For a rectangular PM
shape, the tangential component is zero and the PMs are
oriented radially. But with a Halbach array, the component
will be considered due to the magnets oriented tangentially [see
Fig. 4(d)].

As the cylindrical coordinate system is orthogonal, we may
write the dot product of (2) in the following form:

(6)

The convention adopted for the directions of the vectors are:
• the radial remanent flux density is positive when di-

rected towards the stator;
• the tangential remanent flux density is positive when

directed in the direction of increasing , that is, counter-
clockwise.

Inserting (3) and (4) into (6), we rewrite (6) as

(7)

In (7), the PM remanent flux densities and are
functions of the angle and radius , if we consider that
angle and value are changing around the rotor circumference.

and can be expressed as Fourier series:

(8)

(9)
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If the PMs are assumed as symmetrical, and are
zero for all even values of , giving

(10)

The detailed derivation from (7) to (10) is given in the Appendix.
and are the space harmonic components of the

PM radial remanent flux density in the d-axis and tangential re-
manent flux density in the q-axis. More precisely, Fig. 5(a) il-
lustrates the convention used in (8), (9), and (10) to relate the
phase and direction of (radial harmonic components of

) with respect to the stator winding. In a similar way, Fig. 5(b)
illustrates the convention used for the phase and direction of

(tangential harmonic components of ) with respect to
the stator winding. Fig. 5(b) shows how the tangential magnets
must be configured for a positive and maximum value of the
first space harmonic of , whereas Fig. 5(c) shows the ori-
entation of the tangential magnets for a negative fundamental of

.
In (10), the rotor is assumed as moving with a constant speed,

making an electrical angle with respect to the stator winding.
The reference for is taken as the rotor position for which
the radial magnets face the stator winding, as shown in Fig. 5.
As a convention, angle increases when rotor moves in the di-
rection of increasing .

Up to this point, all the expressions presented allowed to
vary with . For greater simplicity and clarity, further deriva-
tions will assume constant values of within each magnet
layer. Assuming that the remanent flux density is constant
throughout the magnet thickness and
are no longer functions of , that is and

. Also, we assume all fields to be two-di-
mensional, that is, no variable are functions of the axial length
. The double integral of (10) is solved analytically. We obtain

(11)

where is the axial length of the stator laminations.
It is now possible to find an expression for the EMF , by

using Faraday’s law

(12)

Fig. 5. Conventions for d-axis and q-axis remanent flux densities. Rotor elec-
trical angle is � = 0. (a) � = 0, rotor position for positive and maximumB

(b) � = 0, tangential PM layout for positive and maximum B (c) � = 0,
tangential PM layout for negative B .

where is the machine rotational speed in rpm. The factor
at the beginning of (12) indicates that the EMF is calculated for
all the poles in the machine.
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Inserting (11) into (12), we obtain (13), which provides a di-
rect relation between the EMF and the space harmonics of the
remanent flux density patterns of the magnets

(13)

C. Derivation of EMF for an Irregular PM shapes

In Section III-B, we derived expressions for and for a reg-
ular PM shape, i.e., rectangular magnet with a thickness of
laid out on the surface of the rotor. In this section, the analysis
will be extended to less conventional PM shapes, consisting of
two layers of magnets of different widths. In (10), the bound-
aries of integration were and . For the case of seg-
mented magnets with variable widths for each segment, the inte-
gral of (10) will be expressed as a sum of two volume integrals,
that is, one volume integral for each magnet layer.

The advantage of this method, based on the integral calcu-
lated over the magnet volume, is that no new analytical ex-
pression is needed. Equation (10) can be used and only the
boundaries need to be changed.

Fig. 6 shows how the decomposition is made. For each
magnet layer, a flux linkage ( for and for ) and
an EMF ( for and for ) are calculated. Total flux
linkage and EMF are obtained by summing the two compo-
nents. When the calculation is made for one layer, we assume
that the other part is equivalent to air. With this assumption, the
superposition theorem can be applied. In our case, the volume
has been separated in two regions, but if necessary, it could be
done for several regions and the same principle could be used.

From (10), we write the flux linkage. Layer 1 goes from
to and part 2 goes from to

, where is the height of the first segment

(14)

(15)

(16)

Fig. 6. PM integration volume.

The space harmonics and are identified with in-
dices 1 and 2, because the radial and tangential space harmonics
of layer 1 are not the same as for layer 2. Equations (15) and (16)
are solved as follows:

(17)

(18)

The EMF is obtained by derivating (17) and (18) with respect
to . We obtain

(19)

where

(20)

(21)
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Fig. 7. Top: The three rotors used with the stator frame. Bottom: Position of
the stator coil.

With the last two expressions summed up, the EMF of magnet
shapes with two different widths can be predicted. Four magnet
shapes are presented in Section IV.

IV. EXPERIMENTAL RESULTS

In this section, four magnet geometries are illustrated:
• Rectangular-1 layer—radial magnetization;
• Pyramidal-2 layers—radial magnetization;
• T-shape-2 layers—radial magnetization;
• Halbach-2 layers—radial and tangential magnetizations.
For each configuration, the space harmonics of the remanent

flux densities and are illustrated, with the the-
oretical EMF waveform calculated with (19), (20), and (21).
For each configuration, a rotor and stator were built and the
EMF waveform was measured with an oscilloscope across 1 coil
made of five turns, as shown in Fig. 7 (bottom).

Fig. 7 illustrates the electrical machine and the rotors used in
the experiments. In Fig. 7 (top), three rotors are illustrated. The
four configurations could not be shown on the same picture be-
cause only three rotors were used. The T configuration was pre-
pared with the rightmost rotor in the picture, where additional
magnets were glued with a larger width than those already fixed,
at the center of each pole to obtain the T. The parameters of each
configuration are given in Table I. Fig. 7 (bottom) shows where
the stator coil is positioned. We note that it is directly on the
stator laminations and its axial length (2.0 cm) is shorter than
the laminations axial length to minimize end effects. Here, PMs

TABLE I
GEOMETRICAL PARAMETERS OF THE FOUR ROTOR CONFIGURATIONS

have an axial length of at least 5 cm. The coil width is set equal
to the pole pitch, which is 3.93 cm.

The experimental EMF waveforms are illustrated in
Figs. 8(c), 9(c), 10(c), and Fig. 11(c) and compared with
the theoretical waveforms on the same figure. For a rectangular
magnet shape with radial magnetization, Fig. 8 shows the
magnet configuration, the spectral content of the remanent flux
density in the radial direction , and the experimental and
theoretical EMF waveforms.

The results presented in Fig. 8 indicate a good agreement be-
tween the theoretical waveform obtained with (13) and the ex-
perimental waveform.

In Figs. 9 and 10, two-layer magnet configurations are consid-
ered, with a pyramidal stack of magnets and a T configuration.
The results presented in Figs. 9 and 10 indicate a good agree-
ment between the theoretical waveforms obtained with (19),
(20), (21), and the experimental waveforms.

In Fig. 11, a new characteristic is present that is not in the
other figures: the tangential component. In the Halbach array of
Fig. 11, both components, radial and tangential, are presented.
They will both considerably affect the output of the generator.
On the upper half of the PM arrangement of Fig. 11(a), only tan-
gential PMs are present. For that upper magnet layer, the space
harmonic content considered is the tangential harmonic content

only. In the upper half, the radial harmonic content is zero
for all .
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Fig. 8. Results with the rectangular shape. (a) Magnet configuration. (b) Space
harmonics of the PM remanent flux density. (c) Experimental and theoretical
voltage waveforms at no-load across one coil of five turns.

It must be noted that the tangential-radial configuration
proposed in Fig. 11 is probably not very useful for a true
application. Nevertheless, it draws our attention, since it is
a very unconventional geometry and is presented here for
the sole purpose of validating the mathematical expressions
derived in the paper. As a matter of fact, the results presented
in Fig. 11 indicate a good agreement between the theoretical
waveform obtained with (19), (20), (21), and the experimental
waveform.

V. CONCLUSION

The paper has presented a method for deriving the no-load
flux linkage and EMF in a permanent-magnet machine, by
performing a volume integral on the magnets. The method was

Fig. 9. Results with the pyramidal shape. (a) Magnet configuration. (b) Space
harmonics of the PM remanent flux density. (c) Experimental and theoretical
voltage waveforms at no-load across one coil of five turns.

applied to a cylindrical PM machine with surface magnets, with
various magnet configurations. Analytical expressions were ob-
tained, which predict the EMF and no-load flux waveforms very
accurately. The waveforms were validated experimentally on
four configurations of PMs on the rotor: a rectangular magnet
configuration, a pyramidal configuration, a T configuration
and a two-layer Halbach array. In each case, the waveform
obtained experimentally was closely matched by the theoretical
waveform.

This work has been done on an internal slotless ac PM motor,
but the analysis could be extended to different stator geometries
with slots or irregular forms.
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Fig. 10. Results with the “T” shape. (a) Magnet configuration. (b) Space
harmonics of the PM remanent flux density. (c) Experimental and theoretical
voltage waveforms at no-load across one coil of five turns.

APPENDIX

Inserting (8) and (9) into (7) leads to

(AII.1)

Fig. 11. Results with the Halbach array. (a) Magnet configuration. (b) Space
harmonics of the PM remanent flux density. (c) Experimental and theoretical
voltage waveforms at no-load across one coil of five turns.

The four integrals of (AII.1) are solved in the -domain as
follows:

(AII.2)

(AII.3)

(AII.4)
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(AII.5)
Inserting these four results in (AII.1) leads to

(AII.6)

Assuming the winding and the magnets to be symmetrical,
that is all poles have an identical winding distribution, with
alternating polarities. In the same way, all rotor poles are
identical, with alternating polarities. Whence, all
and are equal to 0 for , and all
for . Since the condition in (AII.6)
implies that either or be even (because the sum of two odd
numbers give an even number), the products of and

are equal to 0 for . Whence (AII.6) can
be rewritten as follows:

(AII.7)

The next step consists in expressing the components , and
for arbitrary PM positions of angle :

(AII.8)

(AII.9)

If the electrical angle corresponds to the d-axis position
of the rotor as shown in Fig. 5, is the space harmonic

distribution of the radial remanent flux density of the PM in
the d-axis. is the space harmonic distribution of the tan-
gential remanent flux density of the PM in the q-axis. Inserting
(AII.8) and (AII.9) into (AII.7), we obtain

(AII.10)
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